
The Cloud Infrastructure
Management Interface
(CIMI)

July 2013

Agenda

• What problems does CIMI Solve?
• What are the benefits of CIMI?
• CMWG Background & Status
• CIMI Model
• CIMI REST/HTTP-Based Protocol
• Questions

2

What problems does CIMI Solve?

3

• Cloud customers are using various interfaces to manage their public and
private clouds:

• EC2, OpenStack Nova, Cloud Stack, Open Nebula, vendor specific
• Each API involves work to develop, test and maintain, continually

evolving
• Little to no stability, versioning support, or backward compatibility

guarantees
• APIs are under control of specific vendors, not open standards

organizations
• Open Source projects (CloudStack, OpenStack, Eucalyptus) only

interoperate if everybody is using the same code – no winners here
• Customers need multiple clouds to balance risk and so they must either use

only clouds with the same code, or write multiple adapters to each cloud

What are the benefits of CIMI?
• CIMI is a stable, open, standard implemented on various open source

projects and is under change control of an open, international
standards body (DMTF)

• Multiple Clouds with a Common Interface
• CIMI reduces the effort to use multiple clouds via an interoperable API
• The reduced friction between clouds will grow the overall market for cloud

computing

• Cloud Standards Adoption
• CIMI was created by a large collaboration of cloud vendors, service

providers and telecom companies
• Existing cloud APIs were submitted to DMTF to start the work
• Experience with real cloud issues has been factored into the standard

• Cloud Offerings can continue to innovate
• CIMI is extensible for both unique vendor features as well as future

versions of the standard
• CIMI supports OVF™ for Cloud Portability

4

5

With the ever-increasing need for flexibility, availability and performance in today’s distributed
enterprises, management standards for IT professionals are now more important than ever.

Deploying systems, tools and solutions that support management standards helps reduce
system management complexity, lower costs and improve agility.

The Importance of Cloud Standards

CIMI Background

Cloud Incubator (2009-2010) published informational specifications
"Interoperable Clouds" white paper
Architecture and interfaces
Use cases and resource interaction model

Cloud Management Working Group (CMWG) started July 2010
Scope: IaaS
Chartered Deliverables:

IaaS Model, Requirements,
HTTP REST-based,
Other notes/whitepapers (e.g. Primers)

Leverage other standards, e.g., OVF (Open Virtualization Format) ,
CIM

40+ actively involved companies, academic and alliance members
Many input submissions... work started fresh

6

CIMI Model Essential Characteristics

• Core IaaS functionality
• Deploying, monitoring and managing:

• Machines, Volumes, and Networks

• Supporting Client Roles:
• VM/application developer, deployer and administrator

• Supporting Server Roles:
• IaaS Cloud Provider

• Enables mapping to existing IaaS models in the community

• Simplicity and flexibility
7

CIMI Model – Getting Started

8

CIMI Consumer

CIMI Provider
(Cloud Entry Point)

Cloud Entry Point:

Main entry into the IaaS provider

All other data is discovered, iteratively:

Pointers to Machines, Volumes, Networks, etc...

Metadata describing capabilities and resources constraints

Systems Machines Volumes Networks

CIMI Model – Core Resources

9

CIMI Provider
(Cloud Entry Point)

Systems Machines Volumes Networks

An instantiated
compute
resource that
encapsulates
both CPU and
Memory.

A Volume
represents
storage at either
the block or file-
system level.
Volumes can be
attached to
Machines.

A Network is a
realized entity
that represents
an abstraction of
a layer 2
broadcast
domain.

Grouping of
resources meant
to be managed
as a single unit.

Meters

Networks

Machines

CIMI Model - Systems

10

System

State
Machines
Volumes
Networks

Meters
EventLog

Machines

VolumesVolumes

Networks

Meters

EventLog

Grouping of resources
meant to be managed
as a single unit.

It is expected that
System will be the
import/export point for
entire applications – e.g.
an OVF file.

More on Meters and
Events later...

CIMI Model – Machines & Networks

11

Network

Virtual Switch
Port (VSP)

Virtual Switch
Port (VSP)

Virtual Switch
Port (VSP)

NetInterface:

VSP
Hostname

macAddress
State

Protocol
Allocation
Address

defGateway
DNS

maxTransUnits

Machine

State
CPU
Memory
Disks
Volumes
NetworkInterfaces

Meters
EventLog

CIMI Model – Meters & Events & Jobs

Meters

Represents an available Meter of some property associated to a given
entity.

Can take continuous or interval driven samples.

Realized resources may have multiple Meters.

Events & Event Logs

Event Logs are registries of Events.

Persistence duration is configurable.

Provides a summary (# of high, medium, low...) Events in the log

Events are notifications of useful information from the Provider

Have time, type (error, warning...), severity (high, medium, low),
contact info, ...

Jobs

Represent a process/action performed by the Provider

If supported, all operations (sync & async) generate Jobs
12

CIMI Model – Resource Metadata

Resources that describe the extensions and constraints of CIMI model.

Part of the model itself so it’s retrievable via the CloudEntryPoint.

Allows for machine discovery of model constraints.

Contains:

List of extension attributes and operations

Constraints on CIMI defined, and extension, attributes and extensions

13

CIMI Model – Resource Creation Pattern

14

Machine
Machine
Template

Machine
Configuration

Machine
Image

Machine
Admin

Volumes
Networks, ...

...

Templates are the constructor data when creating
new entities.
They can either be passed in on the create
operation or persisted on the Provider for easy
reuse later.

CIMI REST/HTTP-Based Protocol

Specification currently describes a REST/HTTP binding to the model.

Other bindings are possible.

This protocol binding follows REST principles and describes mapping of
the HTTP protocol verbs to operations on the model.

Standard HTTP status codes are used to convey the results of the
operations.

Serialization formats for the message body include JSON and XML

15

CIMI Primer

The CIMI Primer details specific scenarios and how to use the CIMI
interface to accomplish them

• Create a “Machine” – a running virtual machine image
• Add a “Volume” to a Machine
• Defining and Using Machine Templates
• Create a new Machine from an existing Volume
• Defining and Using System Templates

• We’ll take a look at the first scenario in detail – please read
the Primer for more information on using the other
scenarios

16

Creating a New Machine

This scenario will create a new Machine. The new Machine's configuration will be based on
existing configurations and images offered by the provider. However, a new Credential
resource (userid & password) will be created.

Retrieve the Cloud Entry Point (CEP)

The CEP will provide the links to the set of resources that are available in this Cloud. You
retrieve the CEP to discover the URL to each collection:

GET / HTTP/1.1

HTTP/1.1 200 OK

Content-Type: application/json

{ "resourceURI": "http://schemas.dmtf.org/cimi/1/CloudEntryPoint",

 "id": "http://example.com/CEP",

 "baseURI": "http://example.com/",

 "resourceMetadata": { "href": "http://example.com/resourceMetadata" },

 "machines": { "href": "http://example.com/machines" },

 "machineConfigs": { "href": "http://example.com/machineConfigs" },

 "machineImages": { "href": "http://example.com/machineImages" },

 "credentials": { "href": "http://example.com/credentials" }

} 17

Creating a new Machine (1 of 3)

Retrieve the list of Machine Images

Before you can create a new Machine, first decide what kind of operating system and/or
software you want to have pre-installed. The Machine Images collection is the set of
Machine Images that this Cloud offers - note that some may be predefined by the Cloud
while some may be user-created:

GET /machineImages HTTP/1.1

HTTP/1.1 200 OK

Content-Type: application/json

{ "resourceURI": "http://schemas.dmtf.org/cimi/1/MachineImageCollection",

 "id": "http://example.com/machineImages",

 "count": 3,

 "machineImages": [

 { "resourceURI": "http://schemas.dmtf.org/cimi/1/MachineImage",

 "id": "http://example.com/images/WinXP-SP2",

 "name": "WinXP SP2",

18

Creating a new Machine (2 of 3)

 "description": "Windows XP with Service Pack 2",

 "created": "2012-01-01T12:00:00Z",

 "updated": "2012-01-01T12:00:00Z",

 "imageLocation": { "href": "http://example.com/data/8934322" }

 },

 {

 "resourceURI": "http://schemas.dmtf.org/cimi/1/MachineImage",

 "id": "http://example.com/images/Win7",

 "name": "Windows 7",

 "description": "Windows 7",

 "created": "2012-01-01T12:00:00Z",

 "updated": "2012-01-01T12:00:00Z",

 "imageLocation": { "href": "http://example.com/data/8934344" }

 },

19

Creating a new Machine (3 of 3)

 {

 "resourceURI": "http://schemas.dmtf.org/cimi/1/MachineImage",

 "id": "http://example.com/images/Linux-SUSE",

 "name": "Linux SUSE",

 "description": "Linux SUSE",

 "created": "2012-01-01T12:00:00Z",

 "updated": "2012-01-01T12:00:00Z",

 "imageLocation": { "href": "http://example.com/data/8934311" }

 }

]

}

20

Creating a New Machine

Choose a Machine Image

Next examine each Machine Image to find one that meets your needs. The first one is acceptable, so you will use it later.

It is worth noting that if you knew you wanted to use the first item in the list and only wanted to see that one resource in the
previous query then the following could have been done instead:

GET /machineImages?$last=1 HTTP/1.1

HTTP/1.1 200 OK

Content-Type: application/json

{ "resourceURI": "http://schemas.dmtf.org/cimi/1/MachineImageCollection",

 "id": "http://example.com/machineImages",

 "count": 1,

 "machineImages": [

 { "resourceURI": "http://schemas.dmtf.org/cimi/1/MachineImage",

 "id": "http://example.com/images/WinXP-SP2",

 "name": "WinXP SP2",

 "description": "Windows XP with Service Pack 2",

 "created": "2012-01-01T12:00:00Z",

 "updated": "2012-01-01T12:00:00Z",

 "imageLocation": { "href": "http://example.com/data/8934322" }

 }]
21

Creating a new Machine (1 of 3)

Retrieve the list of Machine Configurations

Next you decide what kind of virtual hardware you want to install your Machine Image onto. As with
determining the kind of Machine Image you want, first ask for the list of available Machine
Configurations:

GET /machineConfigs HTTP/1.1

HTTP/1.1 200 OK

Content-Type: application/json

{ "resourceURI":

 "http://schemas.dmtf.org/cimi/1/MachineConfigurationCollection",

 "id": "http://example.com/machineConfigs",

 "count": 3,

 "machineConfigurations": [

 { "resourceURI": "http://schemas.dmtf.org/cimi/1/MachineConfiguration",

 "id": "http://example.com/configs/tiny",

 "name": "tiny",

 "description": "a teenie tiny one",

22

Creating a new Machine (2 of 3)

"created": "2012-01-01T12:00:00Z",

 "updated": "2012-01-01T12:00:00Z",

 "cpu": 1,

 "memory": 4000000,

 "disks" : [

 { "capacity": 50000000, "format": "ext4" }

]

 },

 { "resourceURI": "http://schemas.dmtf.org/cimi/1/MachineConfiguration",

 "id": "http://example.com/configs/small",

 "name": "small",

 "description": "a small sized one",

 "created": "2012-01-01T12:00:00Z",

 "updated": "2012-01-01T12:00:00Z",

23

Creating a new Machine (3 of 3)

 "cpu": 1,

 "memory": 8000000,

 "disks" : [{ "capacity": 500000000, "format": "ext4" }]

 },

 { "resourceURI": "http://schemas.dmtf.org/cimi/1/MachineConfiguration",

 "id": "http://example.com/configs/medium",

 "name": "medium",

 "description": "a medium one",

 "created": "2012-01-01T12:00:00Z",

 "updated": "2012-01-01T12:00:00Z",

 "cpu": 1,

 "memory": 16000000,

 "disks" : [

 { "capacity": 1000000000, "format": "ext4" },

 { "capacity": 1000000000, "format": "ext4" },

]}]}
24

Creating a new Machine
Choose a Machine Configuration

Next examine the returned list and pick a Machine Configuration that suits your needs. The
first one is acceptable, so you will use it later

Create a new Credential Resource

You want to use your own userid and password for this new Machine, so you need to create
a new Credential resource. This process is done by using the POST operation, but first
you need to retrieve the Credential collection so that you know where to POST a new
Credential resource to:

GET /credentials HTTP/1.1

HTTP/1.1 200 OK

Content-Type: application/json

{ "resourceURI": "http://schemas.dmtf.org/cimi/1/CredentialCollection",

 "id": "http://example.com/credentials",

 "count": 0,

 "operations": [{ "rel": "add", "href": "http://example.com/credentials" }]

} 25

Creating a new Machine

Notice at this point there are no Credential resources in the environment. Before you can create a new
Credential resource, you must first discover this Cloud provider's extension attributes for the
Credential resource. By default the CIMI specification does not define how the initial user of a new
Machine is specified; rather it is left open for each Cloud provider to determine how this information
should be provided. Clients can discover this information by querying the Credential resource
metadata resource. To examine this resource, first look through the ResourceMetadata collection for
this Provider's description of the Credential's resource. Start by retrieving the ResourceMetadata
collection from the URI referenced in the Cloud Entry Point:

GET /resourceMetadata HTTP/1.1

HTTP/1.1 200 OK

Content-Type: application/json

{ "resourceURI": "http://schemas.dmtf.org/cimi/1/ResourceMetadataCollection",

 "id": "http://example.com/resourceMetadata",

 "count": 1,

 "resourceMetadatas": [

26

Creating a new Machine

 { "resourceURI": "http://schemas.dmtf.org/cimi/1/ResourceMetadata",

 "id": "http://example.com/resources/Credential",

 "typeURI": "http://schemas.dmtf.org/cimi/1/Credential",

 "name": "Credential",

 "attributes": [

 { "name": "userID", "namespace": "http://example.com",

 "type": "string", "required": "true" },

 { "name": "password", "namespace": "http://example.com",

 "type": "string", "required": "true" }

]

 }

]

}
27

Creating a new Machine

Now iterate over the list of resourceMetadata entries in the collection for the one whose
"typeURI" is "http://schemas.dmtf.org/cimi/1/Credential". After you find it, you can now
examine the extensions this Provider has added to the Credential resource and the
above indicates that the Credential resource has been extended and must include two
attributes called "userID" and "password". Both are of type "string".

Now create a new Credential resource by using the POST operation:

POST /credentials HTTP/1.1

Content-Type: application/json

{ "resourceURI": "http://schemas.dmtf.org/cimi/1/CredentialCreate",

 "name": "Default",

 "description": "My Default User",

 "credentialTemplate": {

 "userID": "JoeSmith",

 "password": "letmein"

 }}

28

Creating a new Machine

HTTP/1.1 201 Created

Location: http://example.com/creds/12345

Note: While the "userID" and "password" attributes were discovered via
the Credential ResourceMetadata, the "name" and "description"
attributes are part of the common set of attributes available on all
resources. In a future scenario you will see how the client knew that
"userID" and "password" were the proper attribute names for this
image type and Cloud provider.

29

Creating a new Machine

Create a new Machine

Retrieve the Machines collection so that you know where to POST a new
Machine to:

GET /machines HTTP/1.1

HTTP/1.1 200 OK

Content-Type: application/json

{ "resourceURI": "http://schemas.dmtf.org/cimi/1/MachineCollection",

 "id": "http://example.com/machines",

 "count": 0,

 "operations": [{ "rel": "add", "href": "http://example.com/machines" }]

}

 30

Creating a new Machine

Now create a new one:

POST /machines HTTP/1.1

Content-Type: application/json

{ "resourceURI": "http://schemas.dmtf.org/cimi/1/MachineCreate",

 "name": "myMachine1",

 "description": "My very first machine",

 "machineTemplate": {

 "machineConfig": { "href": " http://example.com/configs/tiny" },

 "machineImage": { "href": " http://example.com/images/WinXP-SP2" },

 "credential": { "href": "http://example.com/creds/12345" }

 }

}

 31

Creating a new Machine

HTTP/1.1 201 Created

Location: http://example.com/machines/843752

Note that the Provider could have chosen to return the representation of
the new Machine in the HTTP response, thus making the next step
redundant.

Query new Machine

Retrieve the Machine to get the full representation of the new Machine:

GET /machines/843752 HTTP/1.1

32

Creating a new Machine

HTTP/1.1 200 OK

Content-Type: application/json

{ "resourceURI": "http://schemas.dmtf.org/cimi/1/Machine",

 "id": "http://example.com/machines/843752",

 "name": "myMachine1",

 "description": "My very first machine",

 "created": "2012-08-15T12:15:00Z",

 "updated": "2012-08-15T12:15:00Z",

 "state": "STOPPED",

 "cpu": 1,

 "memory": 4000000,

 "disks" : { "href": "http://example.com/machines/843752/disks",

 33

Creating a new Machine

"networkInterfaces": { "href": "http://example.com/machines/843752/NIs",

 "operations": [

 { "rel": "edit", "href": "http://example.com/machines/843752" },

 { "rel": "delete", "href": "http://example.com/machines/843752" },

 { "rel": "http://schemas.dmtf.org/cimi/1/action/start",

 "href": "http://example.com/machines/843752" }

]

}

Notice the "state"' attribute on the Machine is "STOPPED", which is the
initial state of a new machine.

34

Creating a new Machine

Start a Machine

The presence of the "start" operation in the "operations" array of the
Machine representation indicates not only which URI to POST the
"start" operation to, but that you are able to do it at this time.

POST /machines/843752 HTTP/1.1

Content-Type: application/json

{ "resourceURI": "http://schemas.dmtf.org/cimi/1/Action",

 "action": "http://schemas.dmtf.org/cimi/1/action/start"

}

HTTP/1.1 204 No Content

35

Creating a new Machine

Query a Machine to verify it is started
Query the Machine again to verify that it is started:

GET /machines/843752 HTTP/1.1

HTTP/1.1 200 OK

Content-Type: application/json

{ "resourceURI": "http://schemas.dmtf.org/cimi/1/Machine",

 "id": "http://example.com/machines/843752",

 "name": "myMachine1",

 "description": "My very first machine",

 "created": "2012-08-15T12:15:00Z",

 "updated": "2012-08-15T12:15:00Z",

 "state": "STARTED",

 36

Creating a new Machine

"cpu": 1,

 "memory": 4000000,

 "disks" : { "href": "http://example.com/machines/843752/disks",

 "networkInterfaces": { "href": "http://example.com/machines/843752/NIs",

 "operations": [

 { "rel": "edit", "href": "http://example.com/machines/843752" },

 { "rel": "delete", "href": "http://example.com/machines/843752" },

 { "rel": "http://schemas.dmtf.org/cimi/1/action/stop",

 "href": "http://example.com/machines/843752" }

]

}

Notice the "state" attribute on the Machine is "STARTED" and that the "operations" array no
longer indicates that the "start" operation is available; rather the "stop" operation is
available now instead.

37

Creating a new Machine

Stop a Machine

Using the "stop" operation's URL, you can now ask for the Machine to be
stopped:

POST /machines/843752 HTTP/1.1

Content-Type: application/json

{ "resourceURI": "http://schemas.dmtf.org/cimi/1/Action",

 "action": "http://schemas.dmtf.org/cimi/1/action/stop"

}

HTTP/1.1 204 No Content

38

Creating a new Machine

Update a Machine's attributes

Using PUT operation on the "edit" operation's URL, you can update some of the attribute of
the Machine, for example the "name" and "description":

PUT /machines/843752?$select=name,description HTTP/1.1

Content-Type: application/json

{ "resourceURI": "http://schemas.dmtf.org/cimi/1/Machine",

 "name" : "Cool Demo #1"

}

HTTP/1.1 200 OK

{ "name" : "Cool Demo #1" }

Notice that URL of the "edit" operation has been modified to indicate which attributes are
being updated; only those attributes will be touched. Because the URL includes the
"description" attribute but the HTTP request body does not, that attribute is erased.

39

Thank you!
Dmtf.org/cloud

Questions?

40

	The Cloud Infrastructure Management Interface (CIMI)
	Agenda
	What problems does CIMI Solve?
	What are the benefits of CIMI?
	The Importance of Cloud Standards
	CIMI Background
	CIMI Model Essential Characteristics
	CIMI Model – Getting Started
	CIMI Model – Core Resources
	CIMI Model - Systems
	CIMI Model – Machines & Networks
	CIMI Model – Meters & Events & Jobs
	CIMI Model – Resource Metadata
	CIMI Model – Resource Creation Pattern
	CIMI REST/HTTP-Based Protocol
	CIMI Primer
	Creating a New Machine
	Creating a new Machine (1 of 3)
	Creating a new Machine (2 of 3)
	Creating a new Machine (3 of 3)
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Creating a new Machine
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Thank you! Dmtf.org/cloud

