

Open Virtualization Format 2

Lawrence Lamers – Chair OVF Work Group Hemal Shah – VP of Technology, DMTF Eric Wells – Co-Editor DSP2017

Disclaimer

- The information in this presentation represents a snapshot of work in progress within the DMTF.
- This information is subject to change. The Standard Specifications remain the normative reference for all information.
- For additional information, see the Distributed Management Task Force (DMTF) Web site:

www.dmtf.org

Outline

- OVF background
- OVF Life Cycle Diagram
- OVF 2 features summary
- OVF 2 features details
- Product Placement Example
- OVF timeline
- Conclusion

Background

- The Open Virtualization Format (OVF) Specification describes an open, secure, efficient and extensible format for the packaging and distribution of software to be run in virtual machines.
- The key characteristics of the format are as follows:
 - Optimized for distribution
 - Optimized for a simple, automated user experience
 - Supports both single VM and multiple-VM configurations
 - Portable VM packaging
 - Vendor and platform independent
 - Extensible
 - Localizable
 - A foundation for interoperability
- OVF has arisen from the collaboration of key vendors in the industry.
- DMTF and ISO/IEC standard

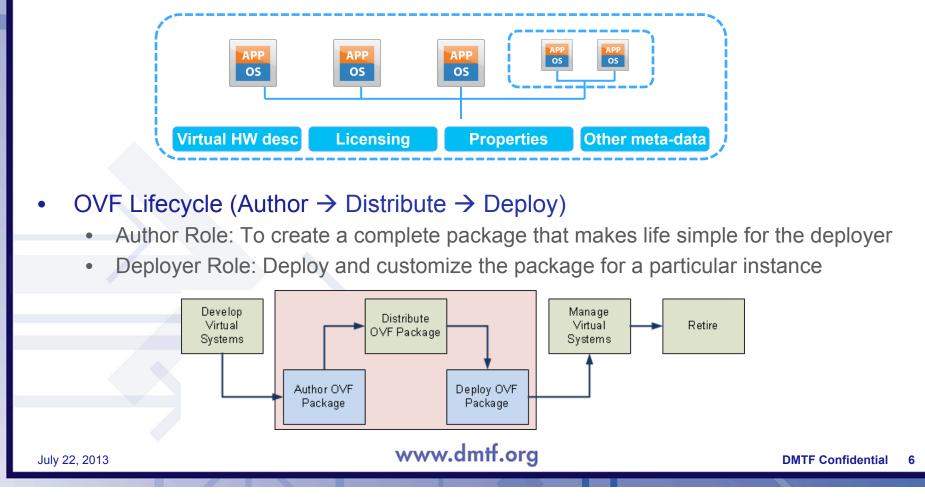
www.dmtf.org

What is...?

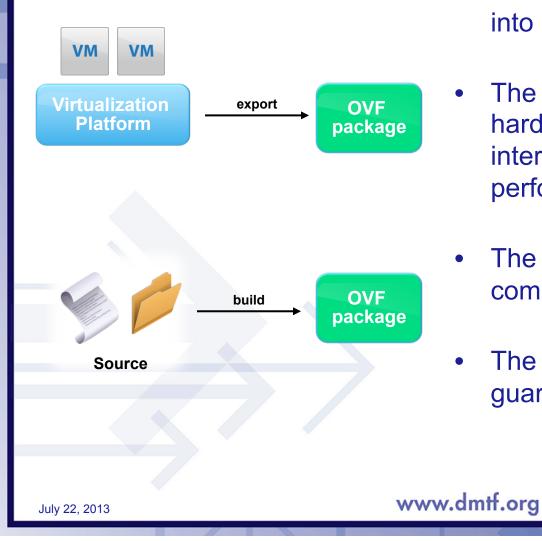
- What is OVF?
 - Packaging format
 - Consists of OVF Descriptor + Virtual Disks + Manifest

• What is an OVF Descriptor?

- An XML file describing the software in an OVF package
- Organized as an envelope with an extensible set of sections
- Core sections describe virtual hardware, EULA, product information, etc.

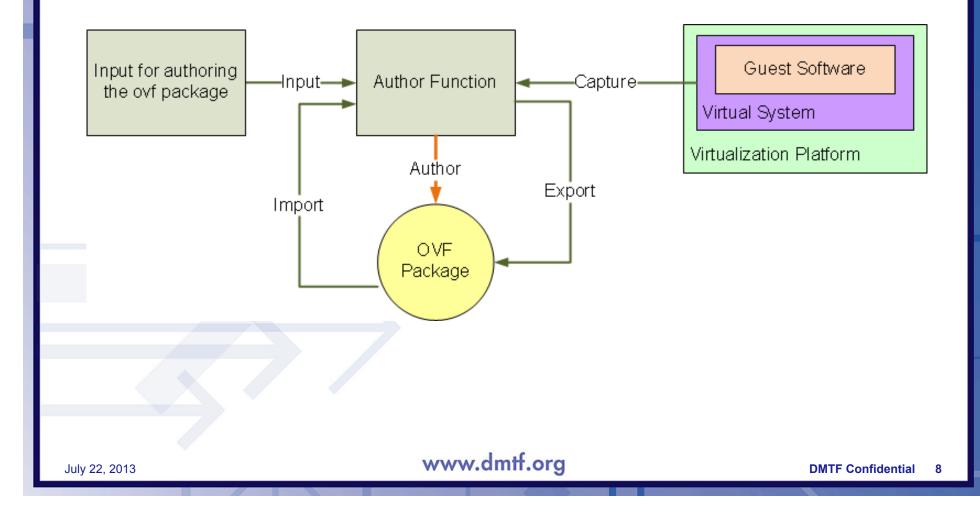

• What is an OVF Environment?

- An XML document conveyed to the guest software
- Enables adaptation to the deployment environment


Open Virtualization Format (OVF)

- A distribution format for virtual appliances
 - Provides a complete description of a single VM or complex multi-VMs

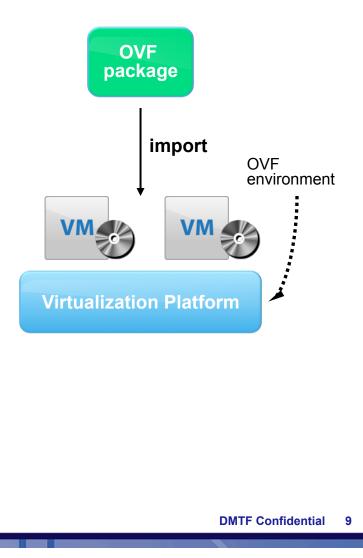
OVF Authoring

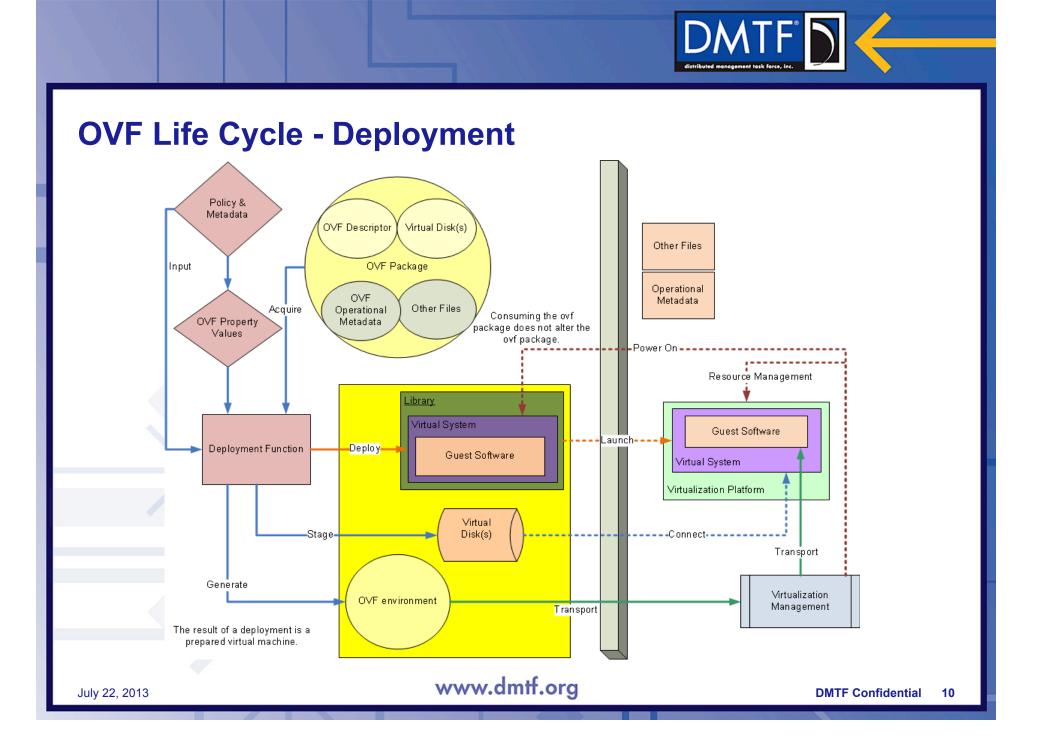


- A virtual machine can be exported into OVF or built from source
- The author can describe "portable hardware" for maximum interoperability or optimum performance
- The virtual machine images can be compressed to facilitate distribution
- The author can sign the package to guarantee its integrity

7

OVF Authoring Details


DMTF distributed management task force, inc.


OVF Deployment

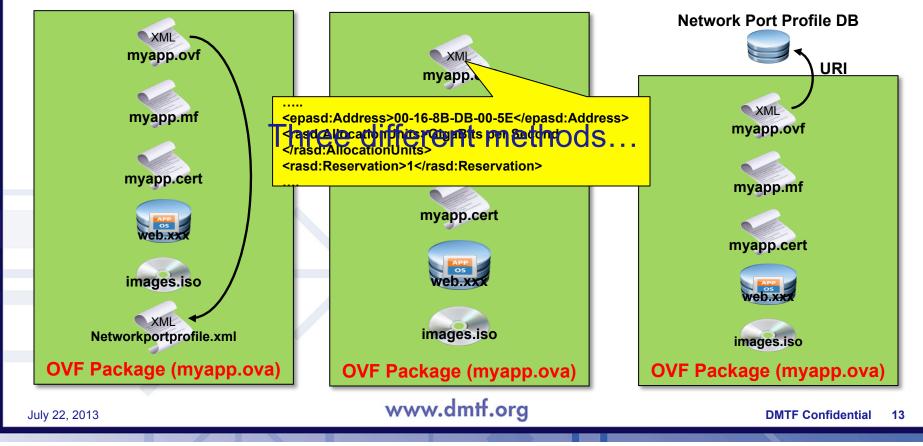
• Validation

- Verify licensing, security, integrity
- Resource requirements and placement
- Application properties
 - such as IP addresses and passwords
- Conversion
 - Convert virtual disks to run-time format
- Installation
 - Provide runtime environment for application
 - customization and localization

www.dmtf.org

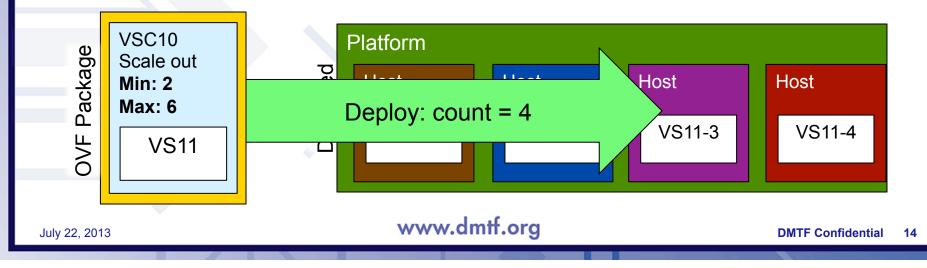
OVF 1 Features

- Support for packaging one or more virtual systems
- Supports localization of content to serve multiple markets
- Extensible XML schema to meet industry needs
- Product information to describe contents
- Licensing information
- Deployment options to customize installation
- Virtual hardware section to constrain package resource usage
- Resource Allocation Descriptors to set resource consumption

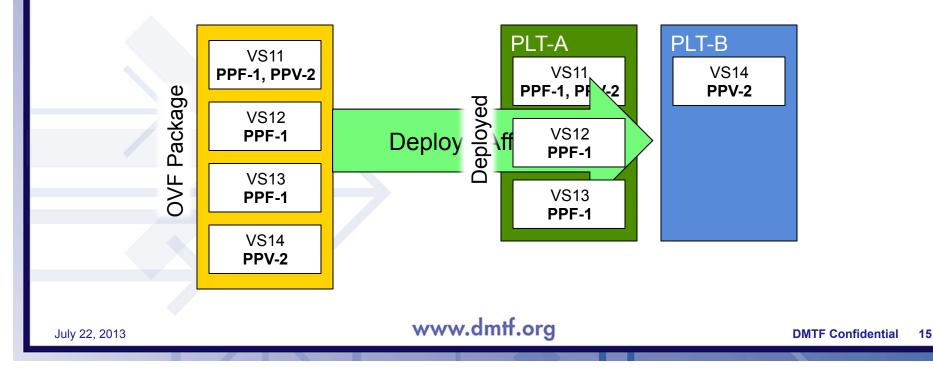

OVF 2 Features

- Support for Network Port Profiles
- Scaling at deployment time
- Support for basic placement policies including scoped placement
- Encryption of OVF packages
- Disk sharing at runtime
- Advanced device boot order
- Advanced data transfer to guest software
- Improved support for Internationalization I18N
- Improved support of HASH functions
- Enhanced shutdown order control
- Updated CIM schema

Support for Network Port Profiles


- Supports network configuration including IEEE Edge Virtual Bridging
 - By using DSP8049 Network Port Profile XML Schema
- Leverages properties of CIM_EthernetPortAllocationSettingData

Support for Scale Out at Deployment


- Allows replication of virtual systems in an OVF package at deployment
- New ScaleOutSection defined to address the use case
 - Replicas share startup order
 - Property values configured at deployment once per replica created
 - DeploymentOptionSection can be used to control scaling values
- Benefits:
 - Number of instantiated virtual systems becomes deployment time decision
 - Enables both min and max bounds on the number of instantiations

Support for Basic Placement Policy

- Define a placement policy for a group of Virtual Systems
- Annotate elements with membership of a particular placement policy
 - "affinity" deploy items to improve communications latency
 - "availability" deploy items to improve fault tolerance
- New PlacementGroupSection defined to enable use cases

Support for Scoped Placement Policy

- Availability deploy items to enhance availability
 - Geographic placed on sites in different geographical area
 - Site different operator site
 - Rack different physical rack
 - Chassis different physical chassis
 - Host different physical hosts

• Affinity – deploy items to enhance connectivity

- Geographic placed on sites within same geographical area
- Site same operator site
- Rack same physical rack
- Chassis same physical chassis
- Host same physical hosts

www.dmtf.org

Support for Encryption

- Desirable to have an encryption scheme to exchange OVF securely
- Provides a scheme for encrypting parts of an OVF descriptor or files
- Encryption scheme closely follows the XML Encryption 1.1 standard
- New EncryptionSection describes one or more encryption methods
 - Approach adopted is extensible to use other methods

Support for Disk Sharing

- Virtual disks in OVF 1.1
 - Can be referenced by multiple virtual machines, but not shared
 - Any level of sharing done at runtime
 - Deployment platform specific
 - Not visible to the guest software
- Certain applications such as clustered databases
 - Rely on multiple virtual machines sharing the same virtual disk at runtime
- New SharedDiskSection allows the OVF package author to:
 - Specify virtual disks shared by more than one VirtualSystem at runtime

Support for Advanced Device Boot Order

- Individual virtual machines normally use the default device boot order
 - Provided by the virtualization platform's virtual BIOS
- BootDeviceSection allows the OVF package author to
 - Specify particular boot configurations & boot order settings for virtual systems in the package
- This feature enables booting from non-default devices such as
 - A NIC using PXE
 - A USB device or a secondary disk.
- Boot configuration is modeled using CIM classes
 - CIM_BootConfigSetting
 - CIM_BootSourceSetting

Support for Advanced Data Transfer to Guest OS

- OVF 1.1 OVF environment file with property values
 - Only file delivered to the guest operating system apart from the virtual disk
- In order to provide additional deployment time customizations
 - EnvironmentFilesSection was added (this is different from environment file)
- EnvironmentFilesSection enables OVF package authors to:
 - Specify additional files in the OVF package, outside of the virtual disks
 - Provide custom values to the guest operating system at runtime
 - Increase flexibility in image customization outside of virtual disk capture
 - Customize solutions by combining existing virtual disks without modifying

Support for Improved Internationalization - i18n

- OVF 2 updated the reference for globalization of the XML content
 - Provide means of adapting the content to different languages, regional differences and technical requirements of a target market
 - Allow for both internationalization and localization
- Based on W3C, Best Practices for XML Internationalization, 2008

Support for Improved HASH on Envelope

- NIST FIPS 180 Secure Hash Standard is used
- OVF 1 packages are allowed to use SHA-1 digests
- OVF 2 packages allowed use of stronger hash digests if needed
- OVF 2 packages requires use of SHA-256 digests

July 22, 2013

Enhanced Shutdown Order Control

- Explicit shutdown order (different from startup order) for virtual systems
 - Important for a certain use cases (e.g. network management)
- New ovf:shutdownorder attribute specifies the shutdown order
 - Uses non-negative integer values
 - If the ovf:shutdownorder ="0" then the shutdown order is not specified
 - If the ovf:shutdownorder is non-zero then the order of execution of the stop action is the numerical descending order of the values
 - If the ovf:shutdownorder attribute is not specified the order of execution of the stop action should be the numerical descending order of the start values
 - The Items with same order identifier may be stopped concurrently

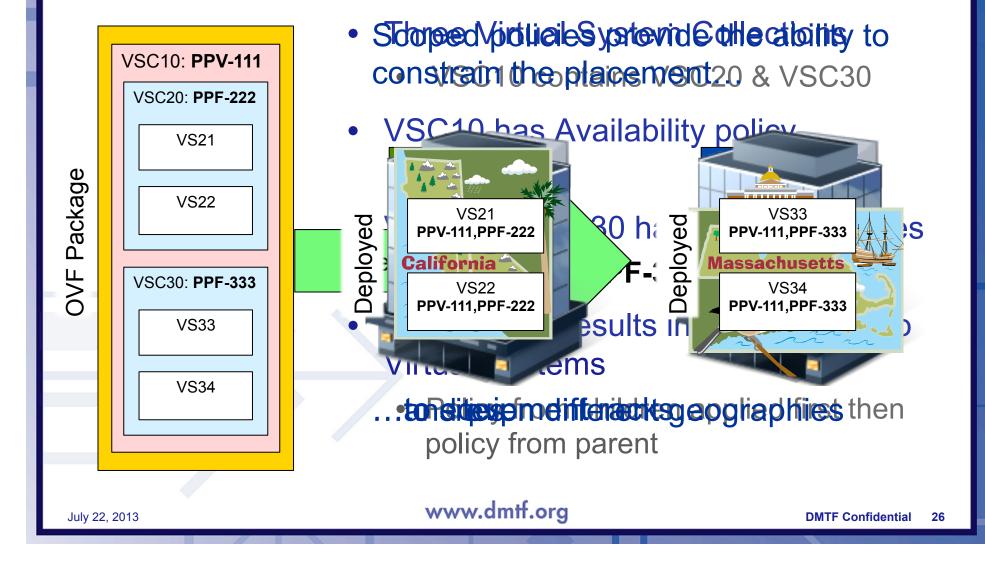
Support for Current CIM Schema

- OVF 2 allows for the use of the current version 2 CIM Schema
 - No lock-in to specific minor version of the schema
 - Enables OVF 2.x to be independently published from CIM Schema
- Namespace reference is to: <u>http://schemas.dmtf.org/wbem/wscim/1/cim-schema/2/CIM_xxxxxx</u>
- Attributes based on CIM Class properties can use the latest version of schema

CIM Class Property Update

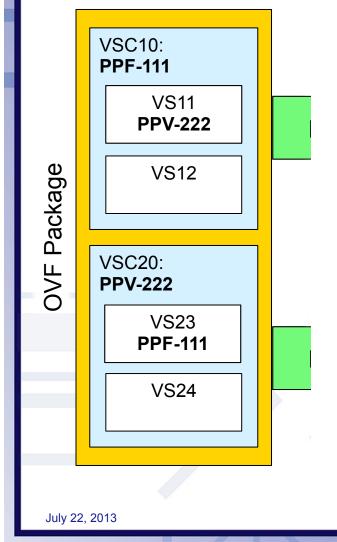
CIM_EthernetPortAllocationSettingData in CIM Schema 2.32

- <xs:sequence>
- <xs:element minOccurs="0" ref="class:Address"/>
- •
- <xs:element minOccurs="0" ref="class:Caption"/>
- <xs:element maxOccurs="unbounded" minOccurs="0" ref="class:Connection"/>
-
- <xs:element minOccurs="0" ref="class:SourceMACFilteringEnabled"/>
- <xs:element minOccurs="0" ref="class:VirtualQuantity"/>
- ...
- </xs:sequence>

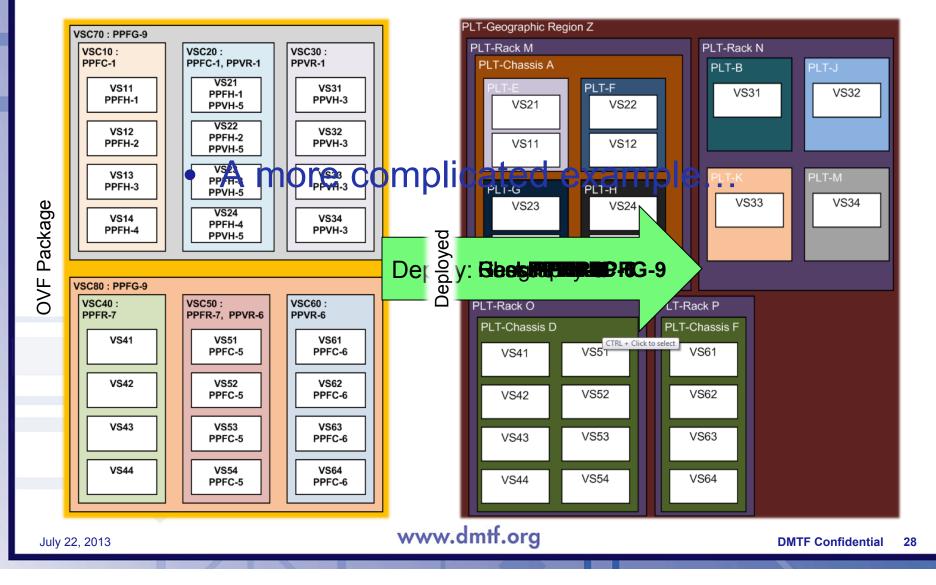

CIM_EthernetPortAllocationSettingData in CIM Schema 2.37

- <xs:sequence>
- <xs:element minOccurs="0" ref="class:Address"/>
-
- <xs:element minOccurs="0" ref="class:Caption"/>
- <xs:element minOccurs="0" ref="class:ChangeableType"/>
- <xs:element minOccurs="0" ref="class:ConfigurationName"/>
- <xs:element maxOccurs="unbounded" minOccurs="0" ref="class:Connection"/>
- ...
- <xs:element minOccurs="0" ref="class:SourceMACFilteringEnabled"/>
- <xs:element minOccurs="0" ref="class:VSITvpeID"/>
- <xs:element minOccurs="0" ref="class:VSITypeIDVersion"/>
- <xs:element minOccurs="0" ref="class:VirtualQuantity"/>
- · ...
- </xs:sequence>

www.dmtf.org


July 22, 2013

Product Placement Use Case 1


Product Placement Use Case 2

- Two Virtual System Collections
- Each VSC has two Virtual Systems
- VSC10 has Affinity policy
 To force specific placements add
- additional policies...
 PPV-222
- Two alternative deployments
 - Both valid deployments

Product Placement Use Case 3

Timeline

- Initial draft submitted to DMTF in 2007
- DMTF DSP0243 1.0 standard in February 2009
- DMTF DSP0243 1.1 standard in January 2010
- ANSI/INCITS 469-2010 Standard in September 2010
- ISO/IEC 17203 standard in August 2011
- DMTF DSP0243 2.0 standard December 2012
- DMTF DSP0243 2.1 work in progress July 2013
- Contributor Companies:
 - Broadcom, BMC Software, CA Technologies, Citrix, Cisco, Dell, Ericsson AB, Fujitsu, Hewlett-Packard, Hitachi, Huawei, IBM, Intel, Microsoft, NEC, NetApp, Oracle, RSA, Symantec, Telefónica, VMware, ZTE Corporation

Questions?

Email contacts: hemal@broadcom.com ljlamers@vmware.com

For feedback or contributions see: http://dmtf.org/standards/feedback

July 22, 2013

www.dmtf.org

Useful Links

- For a list of current work in progress see:
 - http://dmtf.org/standards/wip
 - DSP0243_2.1 OVF Specification
 - DSP2017_2.0 OVF Whitepaper
- For a list of published DMTF standards see:
 - http://dmtf.org/standards/published_documents
- For an overview of DMTF Technologies see:
 - http://dmtf.org/standards/stackmap
- For an overview of DMTF Committees and Work Groups see:
 - http://dmtf.org/about/working-groups
- For a list of webinars provided by DMTF see:
 - http://dmtf.org/education/webinars