
Document Identifier: DSP0274

Date: 2019-09-21

Version: 0.95.0

Security Protocol and Data Model (SPDM) Specification

Supersedes: 0.9.0

Document Class: Normative

Document Status: Work-In-Progress

Document Language: en-US

Information for Work-in-Progress version:

IMPORTANT: This document is not a standard. It does not necessarily reflect the views of the DMTF or its members. Because this document is a Work in Progress, this document may still change,
perhaps profoundly and without notice. This document is available for public review and comment until superseded.

Provide any comments through the DMTF Feedback Portal: http://www.dmtf.org/standards/feedback

Copyright Notice

Copyright © 2019 DMTF. All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems management and interoperability. Members and non-members may reproduce DMTF
specifications and documents, provided that correct attribution is given. As DMTF specifications may be revised from time to time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no
representations to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, or identify any or all such third party patent right, owners or claimants, nor for any
incomplete or inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to any party, in any manner or circumstance, under any legal theory whatsoever, for
failure to recognize, disclose, or identify any such third party patent rights, or for such party's reliance on the standard or incorporation thereof in its product, protocols or testing procedures. DMTF shall
have no liability to any party implementing such standard, whether such implementation is foreseeable or not, nor to any patent owner or claimant, and shall have no liability or responsibility for costs or
losses incurred if a standard is withdrawn or modified after publication, and shall be indemnified and held harmless by any party implementing the standard from any and all claims of infringement by a
patent owner for such implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion, such patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org
/about/policies/disclosures.php.

This document's normative language is English. Translation into other languages is permitted.

CONTENTS

1. Scope
2. Normative references
3. Terms and definitions
4. Symbols and abbreviated terms
5. Conventions

5.1. Reserved and unassigned values
5.2. Byte ordering
5.3. SPDM data types
5.4. Version encoding
5.5. Notations

6. SPDM message exchanges
6.1. Security capability discovery and negotiation
6.2. Identity authentication
6.3. Firmware measurement

7. SPDM messaging protocol
7.1. Generic SPDM message format
7.2. SPDM request codes
7.3. SPDM response codes

8. Concurrent SPDM message processing
8.1. Requirements for Requesters
8.2. Requirements for Responders
8.3. Timing requirements

8.3.0.1. Timing measurements
8.3.1. Timing specification table

9. SPDM messages
9.1. Capability discovery and negotiation

9.1.1. GET_VERSION request message and VERSION response message
9.1.2. GET_CAPABILITIES request message and CAPABILITIES response message
9.1.3. NEGOTIATE_ALGORITHMS request message and ALGORITHMS response message

9.2. Responder identity authentication
9.2.1. Certificates and certificate chains
9.2.2. GET_DIGESTS request message and DIGESTS response message
9.2.3. GET_CERTIFICATE request message and CERTIFICATE response message
9.2.4. Leaf certificate
9.2.5. CHALLENGE request message and CHALLENGE_AUTH response message
9.2.6. Signature generation
9.2.7. Signature verification

9.3. Firmware measurement
9.3.1. GET_MEASUREMENTS request message and MEASUREMENTS response message
9.3.2. Measurement block
9.3.3. Signature generation
9.3.4. Signature verification

9.4. ERROR response message
9.5. RESPOND_IF_READY request message

10. SPDM messaging control and discovery examples
11. ANNEX A (informative)
12. ANNEX B - Leaf certificate example
13. Change log
14. Bibliography

Foreword

The Platform Management Components Intercommunication (PMCI) Working Group of the DMTF prepared the Security Protocol and Data Model (SPDM) Specification (DSP0274). DMTF is a not-for-
profit association of industry members that promotes enterprise and systems management and interoperability. For information about the DMTF, see https://www.dmtf.org.

Acknowledgments

The DMTF acknowledges these individuals' contributions to this document:

Contributors:

Richelle Ahlvers — Broadcom Inc.
Lee Ballard — Dell Technologies
Patrick Caporale — Lenovo
Yu-Yuan Chen — Intel Corporation
Nigel Edwards — Hewlett Packard Enterprise
Daniil Egranov — Arm Limited
Brett Henning — Broadcom Inc.
Jeff Hilland — Hewlett Packard Enterprise
Yuval Itkin — Mellanox Technologies
Theo Koulouris — Hewlett Packard Enterprise
Luis Luciani — Hewlett Packard Enterprise
Masoud Manoo — Lenovo
Donald Mathews — Advanced Micro Devices, Inc
Edward Newman — Hewlett Packard Enterprise
Mahesh Natu — Intel Corporation
Scott Phuong — Cisco Systems Inc.
Jeffrey Plank — Microchip
Viswanath Ponnuru — Dell Technologies
Xiaoyu Ruan — Intel Corporation
Nitin Sarangdhar — Intel Corporation
Hemal Shah — Broadcom Inc.
Srikanth Varadarajan — Intel Corporation

Abstract

The Security Protocol and Data Model (SPDM) Specification defines messages, data objects, and sequences for performing message exchanges between devices over a variety of transport and physical
media. The description of message exchanges includes authentication of hardware identities and measurement for firmware identities. The SPDM enables efficient access to low-level security capabilities
and operations. The SPDM can be used with other mechanisms, including non-PMCI- and DMTF-defined mechanisms.

Document conventions

Document titles appear in italics.
The first occurrence of each important term appears in italics with a link to its definition.
ABNF rules appear in a monospaced font.

1. Scope

This specification describes how to use messages, data objects, and sequences to exchange messages between two devices over a variety of transports and physical media. This specification contains
the message exchanges, sequence diagrams, message formats, and other relevant semantics for such message exchanges, including authentication of hardware identities and firmware measurement
for firmware identities.

Other specifications define the mapping of these messages to different transports and physical media. This specification provides information to enable security policy enforcement but does not specify
individual policy decisions.

2. Normative references

The following referenced documents are indispensable for the application of this specification. For dated or versioned references, only the edition cited (including any corrigenda or DMTF update
versions) applies. For references without a date or version, the latest published edition of the referenced document (including any corrigenda or DMTF update versions) applies.

ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents, https://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&
sort=subtype

IETF RFC5234, Augmented BNF for Syntax Specifications: ABNF, January 2008, https://tools.ietf.org/html/rfc5234

USB Authentication Specification Rev 1.0 with ECN and Errata through January 7, 2019 https://www.usb.org/sites/default/files
/USB%20Authentication%20Specification%20Rev%201.0%20with%20ECN%20and%20Errata%20through%20January%207%2C%202019.zip

TCG Algorithm Registry, Family "2.0", Level 00 Revision 01.27, February 7, 2018 https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/

ASN.1 — ISO-822-1-4

ITU-T X.680

Available at: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.680-201508-I!!PDF-E&type=items

ITU-T X.681

Available at: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.681-201508-I!!PDF-E&type=items

ITU-T X.682

Available at: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.682-201508-I!!PDF-E&type=items

ITU-T X.683

Available at: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.683-201508-I!!PDF-E&type=items

DER — ISO-8825-1

ITU-T X.690

Available at: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.690-201508-I!!PDF-E&type=items

X509v3 — ISO-9594-8

ITU-T X.509

Available at: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.509-201210-I!!PDF-E&type=items

ECDSA

NIST-FIPS-186-4, Section 6

Available at: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

NIST P256, secp256r1; NIST P384, secp384r1; NIST P521, secp521r1: NIST-FIPS-186-4, Appendix D

Available at: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

RSA

As defined in TCG Algorithm Registry, Family "2.0", Level 00 Revision 01.27, February 7, 2018, Table 3: https://trustedcomputinggroup.org/wp-content/uploads
/TCG_Algorithm_Registry_Rev_1.22.pdf

SHA2-256, SHA2-384, and SHA2-512

FIPS PUB 180-4 FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION Secure Hash Standard (SHS)

Available at: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

SHA3-256, SHA3-384, and SHA3-512

FIPS PUB 202FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions

Available at: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

3. Terms and definitions

In this document, some terms have a specific meaning beyond the normal English meaning. This clause defines those terms.

The terms "shall" ("required"), "shall not," "should"("recommended"), "should not" ("not recommended"), "may," "need not" ("not required"), "can" and "cannot" in this document are to be interpreted as
described in ISO/IEC Directives, Part 2, Clause 7. The terms in parentheses are alternatives for the preceding term, for use in exceptional cases when the preceding term cannot be used for linguistic
reasons. Note that ISO/IEC Directives, Part 2, Clause 7 specifies additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal English meaning.

The terms "clause," "subclause," "paragraph," and "annex" in this document are to be interpreted as described in ISO/IEC Directives, Part 2, Clause 6.

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled
"(informative)" do not contain normative content. Notes and examples are always informative elements.

This specification uses these terms:

Term Definition

authentication Process of determining whether an entity is who or what it claims to be.

authentication initiator Endpoint that initiates the authentication process by challenging another endpoint.

byte

Eight-bit quantity. Also known as an octet.

Note: SPDM specifications shall use the term byte, not octet.

certificate Digital form of identification that provides information about an entity and certifies ownership of a particular an asymmetric key-pair.

certificate authority (CA) Trusted third-party entity that issues certificates.

certificate chain Series of two or more certificates. Each certificate is signed by the preceding certificate in the chain.

certificate signing request (CSR) One of the first steps towards getting a certificate.

component Similar to the PCI Express specification’s definition, a physical entity.

device Physical entity such as a network card or a fan.

endpoint Logical entity that communicates with other endpoints over one or more transport protocol.

intermediate certificate Certificate that is neither a root certificate nor a leaf certificate.

leaf certificate Last certificate in a certificate chain.

message See SPDM message.

message body Portion of an SPDM message that carries additional data.

message originator Original transmitter, or source, of an SPDM message.

most significant byte (MSB) Highest order byte in a number consisting of multiple bytes.

nonce

Number that is unpredictable to entities other than its generator.
The probability of the same number occurring more than once is negligible.
Nonce may be generated by combining a pseudo random number of at least 64 bits, optionally concatenated with a monotonic counter of size suitable for
the application.

nibble Computer term for a four-bit aggregation, or half of a byte.

payload

Information-bearing fields of a message.
These fields are separate from the fields and elements, such as address fields, framing bits, checksums, and so on, that transport the message from one
point to another.
In some instances, a field can be both a payload field and a transport field.

physical transport binding Specifications that define how a base messaging protocol is implemented on a particular physical transport type and medium, such as SMBus/I2C, PCI
Express™ Vendor Defined Messaging, and so on.

SPDM message Unit of communication in SPDM communications.

SPDM message payload
Portion of the message body of an SPDM message.
This portion of the message is separate from those fields and elements that identify the SPDM version, the SPDM request and response codes, and the
two parameters.

SPDM request message
Message that is sent to an endpoint to request a specific SPDM operation.
A corresponding SPDM response message acknowledges receipt of an SPDM request message.

SPDM response message
Message that is sent in response to a specific SPDM request message.
This message includes a Response Code field that indicates whether the request completed normally.

Platform Management Component
Intercommunications (PMCI)

Name of a working group under the Distributed Management Task Force that defines standardized communication protocols, low-level data models, and
transport definitions that support communications with and between management controllers and management devices that form a platform management
subsystem within a managed computer system.

Requester
Original transmitter, or source, of an SPDM request message.
It is also the ultimate receiver, or destination, of an SPDM response message.

Responder
Ultimate receiver, or destination, of an SPDM request message.
It is also the original transmitter, or source of an SPDM response message.

root certificate First certificate in a certificate chain, which is self-signed.

Root of Trust (RoT)
Immutable entity that forms the basis for trust in a component.
For example, a hardware block or an immutable firmware executable.

4. Symbols and abbreviated terms

This specification uses these abbreviations:

Abbreviation Definition

CA certificate authority

CSR certificate signing request

MSB most significant byte

PMCI Platform Management Component Intercommunications

RoT Root of Trust

SPDM Security Protocol and Data Model

5. Conventions

The following conventions apply to all SPDM specifications.

5.1. Reserved and unassigned values

Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other numeric ranges are reserved for future definition by the DMTF.

Unless otherwise specified, reserved numeric and bit fields shall be written as zero (0) and ignored when read.

5.2. Byte ordering

Unless otherwise specified, for all SPDM specifications byte ordering of multi-byte numeric fields or multi-byte bit fields is "Little Endian"(that is, the lowest byte offset holds the least significant byte, and
higher offsets hold the more significant bytes).

5.3. SPDM data types

The SPDM data types table lists the abbreviations and descriptions for common data types that SPDM message fields and data structure definitions use. These definitions follow DSP0240 — PLDM Base
Specification.

SPDM data types

Data type Interpretation

ver8
Eight-bit encoding of the SPDM version number. Reserved and unassigned values define the encoding of the version number.
For example, 7:4 is a major version number and 3:0 is a minor version number.

bitfield8 Byte with eight bit fields. Each bit field can be separately defined.

bitfield16 Two-byte word with 16-bit fields. Each bit field can be separately defined.

5.4. Version encoding

The version field represents the version of the specification and contains:

Two bytes. The major and minor nibbles.
One byte. The detailed version.

The major and minor nibbles shall be encoded, as follows:

Version Matches Incremented when

Major Major version field in the SPDMVersion field in the SPDM message header. Protocol modification breaks backward compatibility.

Minor Minor version field in the SPDMVersion field in the SPDM message header. Protocol modification maintains backward compatibility.

EXAMPLE:

Version 3.7 → 0x37

Version 1.0 → 0x10

Version 1.2 → 0x12

An endpoint that supports Version 1.2 can interoperate with an older endpoint that supports Version 1.0, but the available functionality is limited to what is defined in SPDM specification Version 1.0.

An endpoint that supports Version 1.2 and an endpoint that supports Version 3.7 are not interoperable and shall not attempt to communicate beyond GET_VERSION.

The detailed version byte resides in the VERSION response message payload and is incremented to indicate specification bug fixes.

5.5. Notations

The following notations are used for SPDM specifications:

Notation Description

M:N
In field descriptions, this notation typically represents a range of byte offsets starting from byte M and continuing to and including byte N (M ≤ N).
The lowest offset is on the left. The highest offset is on the right.

[4] Square brackets around a number typically indicate a bit offset. Bit offsets are zero-based values. That is, the least significant bit [LSb] offset=0.

[7:5] A range of bit offsets. The most significant is on the left, and the least significant is on the right.

1b A lowercase b after a number consisting of 0s and 1s indicates that the number is in binary format.

0x12A A leading 0x indicates that the number is in hexadecimal format.

6. SPDM message exchanges

The messages exchanges defined in this specification are between two endpoints and are performed and exchanged through sending and receiving of SPDM messages defined in SPDM messages. The
SPDM message exchanges are defined in a generic fashion that allows the messages to be communicated across different physical mediums and over different transport protocols.

The two endpoints have a role of either a Requester or Responder. All messages are paired as command/response with the Requester initiating all communication and the Responder replying to the
communication.

Endpoints may implement both Requester and Responder capabilities. It is possible for a pair of endpoints to be involved with two SPDM message streams between each other with each endpoint having
a Requester role and and Responder role. These two streams are mutually exclusive.

The message exchanges defined in this specification include Requesters that:

1. Discover and negotiate the security capabilities of a Responder.
2. Authenticate the identity of a Responder.
3. Retrieve the firmware measurement of a Responder.

These message exchange capabilities are built on top of well-known and established security practices across the computing industry. Brief overview for each of the message exchange capabilities are
described in the following sections. Some of the message exchange capabilities are based on the security model defined in USB Authentication Specification Rev 1.0.

6.1. Security capability discovery and negotiation

This specification defines a mechanism for an Requester to discover the security capabilities of a Responder. For example, an endpoint could support multiple cryptographic hash functions that are
defined in this specification.

Furthermore, the specification defines a mechanism for THE Requester and Responder to select a common set of cryptographic algorithms to use for all subsequent message exchanges before the
Requester initiates another negotiation, if an overlapping set of cryptographic algorithms exist that both endpoints support.

6.2. Identity authentication

In this specification, the authenticity of a Responder is determined by digital signatures using well-established techniques based on public key cryptography. A Responder proves its identity by generating
digital signatures using a private key, and the signatures can be cryptographically verified by the Requester using the public key associated with that private key.

At a high-level, the authentication of a Responder's identity involves these processes:

Identity provisioning

The process followed by device vendors during or after hardware manufacturing. A trusted root certificate authority (CA) generates a root certificate (RootCert) that is provisioned to the
authentication initiator to allow the authentication initiator to verify the validity of the digital signatures generated by the endpoint during runtime authentication.

The root CA also indirectly through the certificate chain endorses a per-part public/private key pair, where the private key is provisioned to or generated by the endpoint. A device carries a
certificate chain, with the root being the RootCert and the leaf being the device certificate (DeviceCert), which contains the public key corresponding to the device private key.

Runtime authentication

The process by which an authentication initiator (Requester) interacts with a Responder in a running system. The authentication initiator can retrieve the certificate chain(s) from the Responder and
send a unique challenge to the Responder. The Responder then signs the challenge with the private key. The authentication initiator verifies the signature using the public key of the Responder as
well as any intermediate public keys within the certificate chain using the root certificate as the trusted anchor.

6.3. Firmware measurement

Measurement is a term that describes the process of calculating the cryptographic hash value of a piece of firmware/software and tying the cryptographic hash value with the endpoint identity through the
use of digital signatures. This allows an authentication initiator to establish that the identity and measurement of the firmware/software running on the endpoint.

7. SPDM messaging protocol

The SPDM messaging protocol defines a request-response messaging model between two endpoints to perform the message exchanges outlined in SPDM message exchanges. Each SPDM request
message shall be responded to with an SPDM response message as defined in this specification unless otherwise stated in this specification.

Figure 1 depicts the high-level request-response flow diagram for SPDM. An endpoint that acts as the Requester sends an SPDM request message to another endpoint that acts as the Responder, and
the Responder returns an SPDM response message to the Requester.

Figure 1 — SPDM messaging protocol flow

All SPDM request-response messages share a common data format, that consists of a four-byte message header and zero or more bytes message payload that is message-dependent. The following
clauses describe the common message format and SPDM messages details each of the request and response messages.

The Requester shall issue GET_VERSION, GET_CAPABILTIES, and NEGOTIATE_ALGORITHMS request messages before issuing any other request messages.

7.1. Generic SPDM message format

The Generic SPDM message formats table defines the fields that constitute a generic SPDM message, including the message header and payload. The fields within the SPDM messages are transferred
from the lowest offset first.

Generic SPDM message formats

Byte 1 Byte 2 Byte 3 Byte 4

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

SPDM Major Version SPDM Minor Version Request Response Code Param1 Param2

SPDM message payload (zero or more bytes)

The Generic SPDM message field definitions table defines the fields that are part of a generic SPDM message.

Generic SPDM message field definitions

Field name
Field size
(bits)

Description

SPDM Major Version 4
The major version of the SPDM Specification. An endpoint shall not communicate by using an incompatible SPDM version value. See Version
encoding.

SPDM Minor Version 4
The minor version of the SPDM Specification. A specification with a given minor version extends a specification with a lower minor version as long as
they share the major version. See Version encoding.

Request Response
Code

8
The request message code or response code, which the SPDM request codes and SPDM response codes tables enumerate. 0x00 through 0x7F
represent response codes and 0x80 through 0xFF represent request codes.

Param1 8 The first one-byte parameter. The contents of the parameter is specific to the Request Response Code.

Param2 8 The second one-byte parameter. The contents of the parameter is specific to the Request Response Code.

SPDM message payload Variable Zero or more bytes that are specific to the Request Response Code.

7.2. SPDM request codes

The SPDM request codes table defines the SPDM request codes.

All SPDM-compatible implementations shall use the following request codes.

Unsupported request codes shall return an ERROR response message with ErrorCode=UnsupportedRequest.

SPDM request codes

Request Code value Implementation Requirement Message format

GET_DIGESTS 0x81 Optional See the GET_DIGESTS request message table.

GET_CERTIFICATE 0x82 Optional See the GET_CERTIFICATE request message table.

CHALLENGE 0x83 Optional See the CHALLENGE request message table.

GET_VERSION 0x84 Required See the GET_VERSION request message table.

GET_MEASUREMENTS 0xE0 Optional See the GET_MEASUREMENTS request message table.

GET_CAPABILITIES 0xE1 Required See the GET_CAPABILITIES request message table.

NEGOTIATE_ALGORITHMS 0xE3 Required
See the NEGOTIATE_ALGORITHMS request message
table.

RESPOND_IF_READY 0xFF Required See the RESPOND_IF_READY request message table.

Reserved

0x80,
0x85-0xDF,
0xE2,
0xE4-0xFE

SPDM implementations compatible with this version shall not use the reserved
request codes.

7.3. SPDM response codes

The Request Response Code field in the SPDM response message shall specify the appropriate response code for a request. All SPDM-compatible implementations shall use the following response
codes.

On a successful completion of an SPDM operation, the specified response message shall be returned. Upon an unsuccessful completion of an SPDM operation, the ERROR response message shall be
returned.

The SPDM response codes table defines the response codes for SPDM.

SPDM response codes

Response Value Implementation requirement Message format

DIGESTS 0x01 Required for endpoints that support GET_DIGESTS request message. See the GET_DIGESTS request message table.

CERTIFICATE 0x02 Required for endpoints that support GET_CERTIFICATE request message. See the GET_CERTIFICATE request message table.

CHALLENGE_AUTH 0x03 Required for endpoints that support CHALLENGE request message. See the CHALLENGE request message table.

VERSION 0x04 Required for all Responders. See the Successful VERSION response message table.

MEASUREMENTS 0x60 Required for endpoints that support GET_MEASUREMENTS request message. See the Successful MEASUREMENTS response message
table.

CAPABILITIES 0x61 Required for all endpoints. See the Successful CAPABILITIES response message table.

ALGORITHMS 0x63 Required for all endpoints. See the NEGOTIATE_ALGORITHMS request message table.

ERROR 0x7F See the ERROR response message table.

Reserved

0x00,
0x05

0x5F,
0x62,
0x64-0x7E

SPDM implementations compatible with this version shall not use the reserved response
codes.

8. Concurrent SPDM message processing

This clause describes the specifications and requirements for handling concurrent overlapping SPDM request messages.

If an endpoint can act as both a Responder and Requester, it shall be able to send request messages and responses independently.

8.1. Requirements for Requesters

A Requester shall not have multiple outstanding requests to the same Responder, with the exception of GET_VERSION addressed in GET_VERSION request message and VERSION response message.
The SPDM Requester shall wait to issue a subsequent request to a Responder until the Requester completes one of the following actions:

Receives the response from the Responder for the outstanding request.
Times out waiting for a response.
Receives an indication that transmission of the request message failed.

A Requester may send simultaneous request messages to different Responders.

8.2. Requirements for Responders

A Responder that is not ready to accept a new request message shall either respond with an ERROR response message with ErrorCode=Busy or silently discard the request message.

A Responder is not required to process more than one request message at a time. If a Responder is working on a request message from a Requester, the Responder shall be allowed to respond with
ErrorCode=ResponseNotReady.

If a Responder allows simultaneous communications with multiple Requesters, the Responder is expected to distinguish the Requesters by using mechanisms that are outside the scope of this
specification.

8.3. Timing requirements

The Timing specification for SPDM messages table shows the timing specifications for Requesters and Responders.

If the Requester does not receive a response within T1 or T2 time accordingly, the Requester may retry a request message. A retry of a request message shall be a complete retransmission of the
original SPDM request message.

The Responder shall not retry SPDM response messages. It is understood that the transport protocol(s) may retry failed packages, but that is outside of the SPDM specification.

8.3.0.1. Timing measurements

A Requester shall measure timing parameters, applicable to it, from the end of a successful transmission of an SPDM request to the beginning of the reception of the corresponding SPDM response. A
Responder shall measure timing parameters, applicable to it, from the end of the reception of the SPDM request to the beginning of transmission of the response.

8.3.1. Timing specification table

In the Timing specification for SPDM messages table, the Ownership column shows whether the timing parameter applies to the Responder or Requester.

Timing specification for SPDM messages

Timing parameter Ownership Value Description

RTT Requester
See the
Description.

Worst case round-trip transport timing.
The max value shall be the worst case total time for the complete transmission and delivery of an SPDM message round-trip at the
transport layer(s). The actual value for this parameter is transport/media specific.

ST1 Responder 100ms
This shall be the maximum amount of time the Responder has to provide a response that does not require cryptographic processing,
such as GET_CAPABILITIES, GET_VERSION, or NEGOTIATE_ALGORITHMS.

T1 Requester RTT+ST1
This shall be the minimum amount of time the Requester shall wait before issuing a retry for requests that do not require
cryptographic processing. For details, see ST1.

CT Responder 2CTExponent
Cryptographic timeout, in microseconds. CTExponent is reported in the CAPABILITIES message. This timing parameter shall be
the maximum amount of time the Responder has to provide any response requiring cryptographic processing, such as
GET_MEASUREMENTS and CHALLENGE.

T2 Requester RTT+CT
This shall be the minimum amount of time the Requester shall wait before issuing a retry for requests that require cryptographic
processing. For more details, see CT.

RDT Responder 2RDTExponent
Recommended delay, in microseconds. When the Responder cannot complete cryptographic processing response within the CT time,
it shall provide this minimum delay parameter as part of the ERROR response. See the ResponseNotReady extended error data table
for the RDTExponent value. For details, see ErrorCode=ResponseNotReady.

WT Requester RDT

Amount of time the Requester should wait before issuing the RESPOND_IF_READY request. The Requester shall measure this time
parameter from the receipt of the ERROR response to the transmission of RESPOND_IF_READY request. The Requester may take into
account the transmission time of the ERROR from the Responder to Requester when calculating WT.
For details, see RDT.

WTMax Requester (RDT*RDTM)−RTT

Maximum wait time the Requester has to to issue the RESPOND_IF_READY request unless the Requester issued a successful
RESPOND_IF_READY request earlier. After this time, the Responder can drop the response. The Requester shall account for the
transmission time of the ERROR response from the Responder to Requester when calculating WTMax. The ResponseNotReady
extended error data table shows the value of RDTM. The Responder should ensure WTMax does not result less than WT in
determination of RDTM. For details, see ErrorCode=ResponseNotReady.

9. SPDM messages

SPDM messages can be divided into the following categories, supporting different aspects of security exchanges between a Requester and Responder:

1. Capability discovery and negotiation.
2. Hardware identity authentication.
3. Firmware measurement.

9.1. Capability discovery and negotiation

All endpoints shall support GET_VERSION, GET_CAPABILITIES and NEGOTIATE_ALGORITHMS both as a Requester and a Responder. Figure 2 shows the high-level request-response flow and
sequence for the capability discovery and negotiation.

Figure 2 — Capability discovery and negotiation flow

9.1.1. GET_VERSION request message and VERSION response message

This request message shall retrieve an endpoint's security version. The GET_VERSION request message table shows the GET_VERSION request message format and the Successful VERSION
response message table shows the VERSION response message format.

In all future SPDM versions, the GET_VERSION and VERSION response messages will be backward compatible with all previous versions.

If the Requester supports multiple SPDM Major Versions, the Requester shall begin the discovery process by sending a GET_VERSION request message with major version 0x1. All Responders must
always support GET_VERSION request message with major version 0x1 and provide a VERSION response containing all supported versions as described in The GET_VERSION request message table.

The Requester shall consult the VERSION response to select a common (typically highest) version supported. The Requester shall use the selected version in all future communication of other requests.
A Requester shall not issue other requests until it has received a successful VERSION response and has identified a common version supported by both sides. A Responder shall not respond to
GET_VERSION request message with ErrorCode=ResponseNotReady.

A Requester may issue GET_VERSION request message at any time to a Responder, which is as an exception to the rules in Requirements for Requesters for the case where a Requester must restart
the protocol because of internal error or reset. After receiving a GET_VERSION request the Responder shall cancel all previous requests from the same Requester. '

Figure 3 — Discovering common major version

GET_VERSION request message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x84=GET_VERSION

2 Param1 1 Reserved

3 Param2 1 Reserved

Successful VERSION response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x04=VERSION

2 Param1 1 Reserved

3 Param2 1 Reserved

4 Reserved 1 Reserved

5 VersionNumberEntryCount 1 Number of version entries present in this table (=n).

6 VersionNumberEntry1:n 2 x n 16-bit version entry. See the GET_VERSION request message table.

VersionNumberEntry definition

Bit Field Value

[15:12] MajorVersion Version of the specification with changes that are incompatible with one or more functions in earlier major versions of the specification.

[11:8] MinorVersion Version of the specification with changes that are compatible with functions in earlier minor versions of this major version specification.

[7:4] UpdateVersionNumber
Version of the specification with editorial updates but no functionality additions or changes. Informational; possible errata fixes. Ignore when checking
versions for interoperability.

[3:0] Alpha
Pre-release work-in-progress version of the specification. Backward compatible with earlier minor versions of this major version specification. However,
because the Alpha value represents an in-development version of the specification, versions that share the same major and minor version numbers but
have different Alpha versions may not be fully interoperable. Released versions must have an Alpha value of zero.

9.1.2. GET_CAPABILITIES request message and CAPABILITIES response message

This request message shall retrieve an endpoint's security capabilities.

The GET_CAPABILITIES request message table shows the GET_CAPABILITIES request message format.

The Successful CAPABILITIES response message table shows the CAPABILITIES response message format.

The Flag fields definitions table shows the flag fields definitions.

A Responder shall not respond to GET_CAPABILITIES request message with ErrorCode=ResponseNotReady.

GET_CAPABILITIES request message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x61=CAPABILITIES

2 Param1 1 Reserved

3 Param2 1 Reserved

Successful CAPABILITIES response message

Offset Field
Size
(bytes)

Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x61=CAPABILITIES

2 Param1 1 Reserved

3 Param2 1 Reserved

4 Reserved 1 Reserved

5 CTExponent 1

Shall be the exponent of base 2, which is used to calculate CT as described in the Timing specification for SPDM messages table. The

equation for CT shall be 2CT microseconds (us).

For example, if CTExponent is 10, CT is 210=1024 us.

6 Reserved 2 Reserved

8 Flags 4 See the SPDM data types table.

12 Reserved 2 Reserved

Flag fields definitions

Byte Bit Field Value

0 0 Reserved Reserved

0 1 CERT_CAP If set, Responder supports GET_DIGESTS and GET_CERTIFICATE messages.

0 2 CHAL_CAP If set, Responder supports CHALLENGE request message.

0 4:3 MEAS_CAP

The Responder's MEASUREMENT capabilities.

00b. The Responder does not support MEASUREMENTS capabilities.
01b. The Responder support MEASUREMENTS but cannot perform signature generation.
10b. The Responder supports MEASUREMENTS and can generate signatures.
11b. Reserved

0 5 MEAS_FRESH_CAP

0. As part of MEASUREMENTS response message, the Responder may return MEASUREMENTS that were computed during the last Responder’s reset.
1. The Responder can recompute all MEASUREMENTS in a manner that is transparent to the rest of the system and shall always return fresh
MEASUREMENTS as part of MEASUREMENTS response message.

0 7:6 Reserved Reserved

1 7:0 Reserved Reserved

2 7:0 Reserved Reserved

3 7:0 Reserved Reserved

9.1.3. NEGOTIATE_ALGORITHMS request message and ALGORITHMS response message

This request message shall negotiate cryptographic algorithms. A Requester shall not issue an NEGOTIATE_ALGORITHMS request message until it receives a successful CAPABILITIES response
message.

A Requester shall not issue any other SPDM requests with the exception of GET_CAPABILITIES until it receives a successful ALGORITHMS response message with exactly one asymmetric algorithm
and exactly one hashing algorithm.

The NEGOTIATE_ALGORITHMS request message table shows the NEGOTIATE_ALGORITHMS request message format.

The Successful ALGORITHMS response message table shows the ALGORITHMS response message format.

NEGOTIATE_ALGORITHMS request message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0xE3=NEGOTIATE_ALGORITHMS

2 Param1 1 Reserved

3 Param2 1 Reserved

Offset Field Size (bytes) Value

4 Length 2 Length of the entire request message packet, in bytes. Length shall be less than 64 bytes.

6 MeasurementSpecification 1
Bit mask. The values for this field shall be those defined in the MeasurementSpecification field of the
GET_MEASUREMENTS request message and MEASUREMENTS response message. The Requester may set more
than bit to indicate multiple measurement specification support.

7 Reserved 1 Reserved

8 BaseAsymAlgo 4

Bit mask that lists Requester-supported SPDM-enumerated asymmetric key signature algorithms for the purposes of
signature verification.

Byte 0 Bit 0. TPM_ALG_RSASSA_2048
Byte 0 Bit 1. TPM_ALG_RSAPSS_2048
Byte 0 Bit 2. TPM_ALG_RSASSA_3072
Byte 0 Bit 3. TPM_ALG_RSAPSS_3072
Byte 0 Bit 4. TPM_ALG_ECDSA_ECC_NIST_P256
Byte 0 Bit 5. TPM_ALG_RSASSA_4096
Byte 0 Bit 6. TPM_ALG_RSAPSS_4096
Byte 0 Bit 7. TPM_ALG_ECDSA_ECC_NIST_P384
Byte 1 Bit 0. TPM_ALG_ECDSA_ECC_NIST_P521

12 BaseHashAlgo 4

Bit mask listing Requester-supported SPDM-enumerated cryptographic hashing algorithms .

Bit 0. TPM_ALG_SHA_256
Bit 1. TPM_ALG_SHA_384
Bit 2. TPM_ALG_SHA_512
Bit 3. TPM_ALG_SHA3_256
Bit 4. TPM_ALG_SHA3_384
Bit 5. TPM_ALG_SHA3_512

16 Reserved 8 Reserved

24 ExtAsymCount 1
Number of Requester-supported extended asymmetric key signature algorithms (=A). A+E shall be less than or equal
to 8.

25 ExtHashCount 1 Number of Requester-supported extended hashing algorithms (=E). A+E shall be less than or equal to 8.

26 Reserved 2 Reserved for future use.

28 ExtAsym 4*A

List of Requester-supported extended asymmetric key signature algorithms.

First byte in each entry is the enumeration for the encoding for ExtAsym:
0 – DMTF
1 – TCG

Second byte is reserved.
Other two bytes represent the algorithm encoding. At this time, the DMTF namespace has no algorithms
defined. TCG algorithms are enumerated in TCG Algorithm Registry.

28+4 *A ExtHash 4*E

List of extended hashing algorithms supported by Requester.

First byte in each entry is enumeration for the encoding for ExtHash:
0 – DMTF
1 – TCG

Second byte is reserved.
Other two bytes represent the algorithm encoding. At this time, the DMTF namespace has no algorithms
defined. TCG algorithms are enumerated in the TCG Algorithm Registry.

28+4*A+4*E Reserved Length−28−4*A−4*E
Reserved for future expansion. Consult the Length field (offset 4) to determine the number of bytes in the request
message.

Successful ALGORITHMS response message

Offset Field
Size
(bytes)

Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x63=ALGORITHMS

2 Param1 1 Reserved

3 Param2 1 Reserved

4 Length 2 Length of the response message packet, in bytes.

6 MeasurementSpecificationSel 1
Bit mask. The Responder shall select one of the measurement specifications supported by the Requester. Thus, no more than
one bit shall be set. The values in this field shall be defined in the MeasurementSpecification field of the Successful
CERTIFICATE response message.

7 MeasurementHashAlgo 1

Bit mask listing SPDM-enumerated hashing algorithm for measurements. M represents the length of the measurement hash
field in measurement block structure. See the CHALLENGE request message table. The Responder shall ensure the length of
measurement hash field during all subsequent MEASUREMENT response messages to the Requester until the next
ALGORITHMS response message is M.

Bit 0. TPM_ALG_SHA_256, M=32
Bit 1. TPM_ALG_SHA_384, M=48
Bit 2. TPM_ALG_SHA_512, M=64
Bit 3. TPM_ALG_SHA3_256, M=32
Bit 4. TPM_ALG_SHA3_384, M=48

Offset Field
Size
(bytes)

Value

Bit 5. TPM_ALG_SHA3_512, M=64

If the Responder supports GET_MEASUREMENTS, exactly one bit in this bit field shall be set. Otherwise, the Responder shall
set this field to 0.

8 BaseAsymSel 4
Bit mask listing SPDM-enumerated asymmetric key signature algorithm selected. A Responder that returns AUTH_CAP=0 and
MEAS_CAP=0 shall set this field 0. Other Responders shall set no more than one bit.

12 BaseHashSel 4
Bit mask listing SPDM-enumerated hashing algorithm selected. A Responder that returns AUTH_CAP=0 and MEAS_CAP=0
shall set this field to 0. Other Responders shall set no more than one bit.

16 Reserved 8 Reserved.

24 ExtAsymSelCount 1
Number of extended asymmetric key signature algorithms selected. Shall be either 0 or 1. (=A) A Requester that returns
AUTH_CAP=0 and MEAS_CAP=0 shall set this field to 0.

25 ExtHashSelCount 1
Number of extended hashing algorithms selected. Shall be either 0 or 1. (=H) A Requester that returns AUTH_CAP=0 and
MEAS_CAP=0 shall set this field to 0.

26 Reserved 2 Reserved

28 ExtAsymSel 4*A

Extended asymmetric key signature algorithm selected. Responder must be able to sign a response message using this
algorithm and Requester must have listed this algorithm in the request message indicating it can verify a response message
using this algorithm. The Responder shall use this asymmetric signature algorithm during all subsequent applicable response
messages to the Requester until the next ALGORITHMS response message.

First byte is enumeration for the encoding for ExtAsymSel:
0 - DMTF
1 - TCG

Second byte is reserved.
The other two bytes represent the algorithm encoding. At this time, the DMTF namespace has no algorithms defined.
TCG algorithms are enumerated in TCG Algorithm Registry.

28+4*A ExtHashSel 4*H

Selected extended hashing algorithm. The Responder shall use this hashing algorithm during all subsequent response
messages to the Requester until the next ALGORITHMS response message. The Requester shall use this hashing algorithm
during all subsequent applicable request messages to the Responder until the next ALGORITHMS response message. The
length of the nonce and salt fields exchanged during subsequent applicable request messages and response messages shall
match the length of the selected hash, until the next ALGORITHM response message.

First byte is enumeration for the encoding for ExtHashSel:
0 - DMTF
1 - TCG

Second byte is reserved.
Other two bytes represent the algorithm encoding. At this time, the DMTF namespace has no algorithms defined. TCG
algorithms are enumerated in TCG Algorithm Registry.

28+4*A+4*H Reserved
Length
—28 —

Reserved for 4*A through 4*H future expansion. Consult the length field (offset 4) to determine the total number of bytes in the
response message.

This clause illustrates how two endpoints negotiate base hashing algorithm.

In Figure 4, endpoint A issues NEGOTIATE_ALGORITHMS request message and endpoint B selects an algorithm of which both endpoints are capable.

Figure 4 — Hashing algorithm selection: Example 1

SPDM protocol accounts for the possibility that both endpoints may issue NEGOTIATE_ALGORITHMS request message independent of each other. In this case, endpoint A Requester and endpoint B
Responder communication pair may select a different algorithm compared to the endpoint B Requester and endpoint A Responder communication pair.

9.2. Responder identity authentication

This clause describes request messages and response messages associated with the Responder's identity authentication operations. All request messages in this clause shall be supported by a
Responder that returns AUTH_CAP=1 in the CAPABILITIES response message.

Figure 5 shows the high-level request-response message flow and sequence for Responder's identity authentication for certificate retrieval.

Figure 6 shows the high-level request-response message flow and sequence for Responder's authentication for runtime challenge-response.

Figure 5 — Responder authentication: example certificate retrieval flow

Figure 6 — Responder authentication: runtime challenge-response flow

The GET_DIGESTS request message and DIGESTS response message may optimize the amount of data required to be transferred from the Responder to the Requester, due to the potentially large size
of a certificate chain. The cryptographic hash values of each of the certificate chains stored on an endpoint is returned with the DIGESTS response message, such that the Requester can cache the
previously retrieved certificate chain hash values to detect any change to the certificate chains stored on the device before issuing the GET_CERTIFICATE request message.

For the runtime challenge-response flow, the signature field in the CHALLENGE_AUTH response message payload shall be signed using the device private key over the GET_VERSION request, VERSION
response, GET_CAPABILITIES request, CAPABILITIES response, NEGOTIATE_ALGORITHMS request, ALGORITHMS response, CHALLENGE request message and the CHALLENGE_AUTH response
message except for the signature field, to ensure cryptographic binding between a specific request message from a specific Requester and a specific response message from a specific Responder.
Inclusion of GET_VERSION request, VERSION response, GET_CAPABILITIES request, CAPABILITIES response, NEGOTIATE_ALGORITHMS request and ALGORITHMS response allows the Responder
to detect the presence of an active adversary attempting to downgrade cryptographic algorithms or SPDM Major Versions. Furthermore, a nonce generated by the Requester protects the challenge-
response from replay attacks, whereas a nonce generated by the Responder prevents the Responder from signing over arbitrary data dictated by the Requester. The signature computation is restarted
with the latest GET_VERSION request received.

9.2.1. Certificates and certificate chains

Each Responder that supports identity authentication shall carry at least one certificate chain. A certificate chain contains an ordered list of certificates, presented as the binary (byte) concatenation of the
fields shown in the CHALLENGE request message table. Each certificate shall be in ASN.1 DER-encoded X509v3 format. The ASN.1 DER encoding of each individual certificate can be analyzed to
determine its length. The minimum number of certificates within a chain shall be one, in which case the single certificate is the device-specific certificate. The Responder shall contain a single public-
private key pair per supported algorithm for its hardware identity, regardless of how many certificate chains are stored on the device. The Responder selects a single asymmetric key signature algorithm
per Requester.

Certificate chains are stored in locations called slots. Each slot shall either be empty or contain one complete certificate chain. A product shall not contain more than 8 slots. Slot 0 is populated by default.
Additional slots may be populated through the supply chain such as by a platform integrator or by an end user such as the IT administrator. A slot mask is used to identify the certificate chains from the 8
slots.

In this document, H refers to the output size (bytes) of the hash algorithm agreed upon in NEGOTIATE_ALGORITHMS.

Certificate chain format

Offset Field Size Description

0 Length 2 Total length of the certificate chain, in bytes, including all fields in this table. This field is little endian.

2 Reserved 2 Reserved.

4 RootHash H Digest of the Root Certificate. Note that Root Certificate is ASN.1 DER-encoded for this digest. This field is big endian.

4+H Certificates Length−(4+H)
One or more ASN.1 DER-encoded X509v3 certificates where the first certificate is signed by the Root Certificate or is the Root Certificate itself and
each subsequent certificate is signed by the preceding certificate. The last certificate is the Leaf Certificate. This field is big endian.

9.2.2. GET_DIGESTS request message and DIGESTS response message

This request message shall retrieve the certificate chain digests.

The GET_DIGESTS request message table shows the GET_DIGESTS request message format. The digests in the GET_DIGESTS request message table are in big endian.

The Successful DIGESTS response message table shows the DIGESTS response message format.

GET_DIGESTS request message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x81=GET_DIGESTS

2 Param1 1 Reserved

3 Param2 1 Reserved

Successful DIGESTS response message

Offset Field
Size
(bytes)

Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x01=DIGESTS

2 Param1 1 Reserved

3 Param2 1
Slot mask. The bit in position K of this byte shall be set to 1b if and only if slot number K contains a certificate chain for the protocol
version in the SPDMVersion field. (Bit 0 is the least significant bit of the byte.) Number of digests returned shall be equal to Number of
bits set in this byte. The digests shall be returned in order of increasing slot number.

4 Digest[0] H Digest of the first certificate chain.

...

4+(H*(n−1)) Digest[n-1] H Digest of the last (nth) certificate chain.

9.2.3. GET_CERTIFICATE request message and CERTIFICATE response message

This request message shall retrieve the certificate chains.

The GET_CERTIFICATE request message table shows the GET_CERTIFICATE request message format.

The Successful CERTIFICATE response message table shows the CERTIFICATE response message format.

The Responder should, at a minimum, save the public key of the leaf certificate and associate with each of the digests returned by DIGESTS message response. The Requester sends one or more
GET_CERTIFICATE requests to retrieve the Responder's certificate chain.

GET_CERTIFICATE request message

Offset Field
Size
(bytes)

Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x82=GET_CERTIFICATE

2 Param1 1 Slot number of the target certificate chain to read from. The value in this field shall be between 0 and 7 inclusive.

3 Param2 1 Reserved

4 Offset 2
Offset in bytes from the start of the certificate chain to where the read request message begins. The Responder should send its certificate
chain starting from this offset. For the first GET_CERTIFICATE request, the Requester must set this field to 0. For non-first requests, Offset
is the sum of the PortionLength values in all previous GET_CERTIFICATE responses.

6 Length 2

Length of certificate chain data, in bytes, to be returned in the corresponding response. Length is an unsigned 16-bit integer. The smaller of the
following two values: capacity of Requester's internal buffer for receiving Responder's certificate chain, and, RemainderLength of the preceding
GET_CERTIFICATE response. For the first GET_CERTIFICATE request, the Requester should use the capacity of the Requester's receiving
buffer. If offset=0 and length=0xFFFF, the Requester is requesting the entire chain.

Successful CERTIFICATE response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x02=CERTIFICATE

2 Param1 1 Slot number of the certificate chain returned.

3 Param2 1 Reserved.

4 PortionLength 2 Number of bytes of this portion of certificate chain. This should be less than or equal to Length received as part of the request.

6 RemainderLength 2
Number of bytes of the certificate chain that have not been sent yet after the current response. For the last response, this field shall be 0
as an indication to the Requester that the entire certificate chain has been sent.

8 CertChain PortionLength Requested contents of target certificate chain, formatted in DER. This field is big endian.

Figure 7 shows the high-level request-response message flow for Responder response when it cannot return the entire data requested by the Requester in the first response.

Figure 7 — Responder unable to return full length data flow

9.2.4. Leaf certificate

The SPDM endpoints for authentication must be provisioned with DER-encoded X.509 v3 format certificates. The leaf certificate must be signed by a trusted CA and provisioned to the device. For
endpoint devices to verify the certificate, the following required fields must be present. In addition, to provide device information, use the Subject Alternative Name certificate extension OtherName field.

9.2.4.1. Required fields

Field Description

Version Version of encoded certificate. Shall be present and shall be 3 or 2.

Serial Number CA-assigned serial number. Shall be present with a positive integer value.

Signature
Algorithm

Signature algorithm used by CA. Shall be present.

Issuer CA-distinguished name. Shall be specified.

Subject Name Subject name. Shall be present. Shall represent the distinguished name associated with the leaf certificate.

Validity
Certificate may include this attribute. If validity attribute is present, the value for notBefore field should be assigned the generalized 19700101000000Z time value and
notAfter field should be assigned the generalized 99991231235959Z time value.

Subject Public
Key Info

Device public key and the algorithm. Shall be present.

Extended Key
Usage

Extended key usage. Shall be present and key usage bit for digital signature shall be set.

9.2.4.2. Optional fields

Field Description

Basic Constraints If present, the CA value shall be FALSE.

Subject Alternative
Name OtherName

In some cases, it might be desirable to provide device specific information as part of the device certificate. DMTF chose the OtherName field to be used with a specific
format to represent the device information. The use of the OtherName field also provides flexibility that enables other alliances to provide information about device
specific information as part of the device certificate.

9.2.4.3. Definition of otherName using the DMTF OID

DMTFOtherName :== SEQUENCE {
 type-id [0] id-DMTF-device-info
 value [1] ub-DMTF-device-info
}
-- OID for DMTF device info --
id-DMTF-device-info OBJECT IDENTIFIER ::== { 1 3 6 1 4 1 412 274 1 }

-- All printable characters except ":" --
DMTF-device-string PrintableString ::== (ALL EXCEPT ":")

-- Device Manufacturer --
DMTF-manufacturer ::== DMTF-device-string

-- Device Product --
DMTF-product ::== DMTF-device-string

-- Device Serial Number --
DMTF-serialNumber ::== DMTF-device-string

-- Device information string --
ub-DMTF-device-info UTF8String ::== (DMTF-manufacturer":"DMTF-product":"DMTF-serialNumber)

Annex B shows an example leaf certificate.

9.2.5. CHALLENGE request message and CHALLENGE_AUTH response message

This request message shall authenticate an endpoint through the challenge-response protocol.

The CHALLENGE request message table shows the CHALLENGE request message format.

The Successful CHALLENGE_AUTH response message table shows the CHALLENGE_AUTH response message format.

CHALLENGE request message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x83=CHALLENGE

2 Param1 1 Slot number of the Responder's certificate chain that shall be used for authentication.

3 Param2 1 Reserved

4 Nonce 32 The Requester should choose a random value.

Successful CHALLENGE_AUTH response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x03=CHALLENGE_AUTH

2 Param1 1 Shall contain the Slot number in the Param1 field of the corresponding CHALLENGE request.

3 Param2 1
Slot mask. The bit in position K of this byte shall be set to 1b if and only if slot number K contains a certificate
chain for the protocol version in the SPDMVersion field. (Bit 0 is the least significant bit of the byte.)

4 MinSPDMVersion 1 Minimum SPDM version supported by this endpoint.

5 MaxSPDMVersion 1 Maximum SPDM version supported by this endpoint.

6 CAPABILITIES 1 Set to 01h for this specification. All other values reserved.

7 Reserved 1 Reserved

8 CertChainHash H Hash of the certificate chain used for authentication. This field is big endian.

8+H Nonce 32 Responder-selected random value.

8+2H MeasurementSummaryHash H
Hash computed using Concatenation(Measurement 1, Measurement 2,, Measurement N) of all measurements
supported by the device. The measurements include all supported indices by the device.

8+3H OpaqueLength 2 Size of the OpaqueData field. The value shall not be greater than 1024 bytes.

10+3H OpaqueData OpaqueLength
Free-form field, if present. The Responder may include Responder-specific information and/or information defined
by its transport.

10+3H+OpaqueLength Signature S
Size of the asymmetric signing algorithm output the Responder selected via the last ALGORITHMS response
message to the Requester. Signature generation and verification processes are defined in the Signature
generation and Signature verification clauses, respectively.

9.2.6. Signature generation

1. The Responder shall construct M1:

 M1=Concatenate(GET_VERSION, VERSION, GET_CAPABILITIES, CAPABILITIES, NEGOTIATE_ALGORITHMS, ALGORITHMS, CHALLENGE, CHALLENGE_AUTH)

where:

| Value | Description | |:------|:------------| | Concatenate () | Standard concatenation function. | | GET_VERSION | Entire contents of the last successful GET_VERSION request message
processed by the Responder. | | VERSION | Entire contents of the associated response message sent by the Responder. Constructing M1 may require that the Responder preserve the contents of
these earlier messages. | | GET_CAPABILITIES | Entire contents of the last successful GET_CAPABILITIES request message processed by the Responder. | | CAPABILITIES | Entire contents
of the associated response message sent by the Responder. Constructing M1 may require that the Responder preserve the contents of these earlier messages. | | NEGOTIATE_ALGORITHMS |
Entire contents of the last successful NEGOTIATE_ALGORITHMS request message processed by the Responder. | | ALGORITHMS | Entire contents of the associated response message sent by the
Responder. Constructing M1 may require that the Responder preserve the contents of these earlier messages. | | CHALLENGE | Entire contents of the CHALLENGE request message under
consideration, as seen by the Responder. | CHALLENGE_AUTH | Entire CHALLENGE_AUTH response message without the signature bytes, as sent by the Responder. |

2. The Responder shall generate:

 Signature=Sign(SK, Hash1(M1))

where:

Sign is the asymmetric signing algorithm the Responder selected via the last ALGORITHMS response message sent by the Responder. See BaseAsymSel or ExtAsymSel fields in the
CHALLENGE request message table.

Hash1 is the hashing algorithm the Responder selected via the last ALGORITHMS response message sent by the Responder. See BaseHashSel or ExtHashSel fields in the CHALLENGE
request message table.

SK is the private Key associated with the Responder's leaf certificate in slot=Param1 of CHALLENGE request message.

9.2.7. Signature verification

1. The Requester shall create M2 as:

 M2=Concatenate (GET_VERSION, VERSION, GET_CAPABILITIES, CAPABILITIES,
 `NEGOTIATE_ALGORITHMS`, ALGORITHMS, CHALLENGE, CHALLENGE_AUTH)

where

Concatenate() is the standard concatenation function.

GET_VERSION is the entire contents of the last successful GET_VERSION request message processed by the Responder. VERSION is the entire contents of the associated response
message sent by the Responder. Constructing M1 may require that the Responder preserve the contents of these prior messages.

GET_CAPABILITIES is the entire contents of the last successful GET_CAPABILITIES request message sent by the Requester. CAPABILITIES is the entire contents of the associated
response message received by the Requester. Constructing M2 may require that the Requester preserve the contents of these previous messages.

NEGOTIATE_ALGORITHMS is the entire contents of the last successful NEGOTIATE_ALGORITHMS request message sent by the Requester. ALGORITHMS is the entire contents of the
associated response message received by the Requester. Constructing M2 may require that the Requester preserve the contents of these previous messages.

CHALLENGE is the entire contents of the CHALLENGE request message under consideration as sent by the Requester. CHALLENGE_AUTH is the entire CHALLENGE_AUTH response message
without the signature field, as received by the Requester.

Modifications to the previous request messages or the corresponding response messages by an active person-in-the-middle adversary or media error result in M2!=M1 and lead to
verification failure.

2. The Requester shall perform:

 Verify(PK, Hash2(M2), Signature)

where:

PK is the public key associated with the leaf certificate of the Responder with slot=Param1 of the CHALLENGE request message.

Verify is the asymmetric verification algorithm the Responder selected through the last ALGORITHMS response message as received by the Requester. See the BaseAsymSel or
ExtAsymSel field in the CHALLENGE request message table.

Hash2 is the hashing algorithm the Responder selected via the last ALGORITHMS response message sent as received by the Requester. See the BaseHashSel or ExtHashSel field in the
CHALLENGE request message table.

9.3. Firmware measurement

This clause describes request messages and response messages associated with endpoint firmware measurement. All request messages in this clause shall be supported by an endpoint that returns
MEAS_CAP=1 in CAPABILITIES response.

Figure 8 shows the high-level request-response flow and sequence for endpoint firmware measurement. If MEAS_FRESH_CAP bit in the CAPABILITIES response message returns 0, and the Requester
requires fresh measurements, the Responder must be reset before GET_MEASUREMENTS is reset. The mechanisms employed for resetting the Responder are outside the scope of this specification.

Figure 8 — Firmware measurement retrieval flow

9.3.1. GET_MEASUREMENTS request message and MEASUREMENTS response message

This request message shall retrieve firmware measurements.

The GET_MEASUREMENTS request message table shows the GET_MEASUREMENTS request message format.

The GET_MEASUREMENTS request attributes table shows the GET_MEASUREMENTS request message attributes.

The Successful MEASUREMENTS response message table shows the MEASUREMENTS response message format.

GET_MEASUREMENTS request message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0xE0=GET_MEASUREMENTS

2 Param1 1 Request attributes. See the GET_MEASUREMENTS request attributes table.

3 Param2 1

Measurement operation.

A 0x0 value shall request the total number of measurements.
A 0xFF value returns all measurements.
A value from 0x1 to 0xFE shall request the measurement at that value.

4 Nonce 32 The Requester should choose a random value.

GET_MEASUREMENTS request attributes

Bit(s) Value Description

Bit(s) Value Description

0 1
If the Responder can generate a signature as indicated in CAPABILITIES message, this bit's value shall indicate that the Responder is to generate a signature. The
Responder shall generate a signature in the corresponding response. The Nonce field shall be present in the request.

0 0
This bit's value shall be used for Responders incapable of generating a signature as indicated in CAPABILITIES message. For Responders that can generate signatures,
this bit's value shall indicate the Requester does not want a signature. The Responder shall not generate a signature in the response. The Nonce field may be absent in the
request.

[7:1] Reserved Reserved

Successful MEASUREMENTS response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x60=MEASUREMENTS

2 Param1 1
When the requested measurement operation is 0, this parameter shall return the total number of measurement
indices on the device. Otherwise, this field is reserved.

3 Param2 1 Reserved

4 NumberOfBlocks 1
Number of measurement blocks (N) in MeasurementRecord. This field shall reflect Number of measurement
blocks in MeasurementRecord. If the requested measurement operation is 0, this field shall be 0.

8 MeasurementRecord L=N*(M+4)
Concatenation of all Measurement Blocks that correspond to the requested Measurement operation. The
Measurement Block structure is defined in Measurement block.

8+L Nonce 32 The Responder should choose a random value.

8+2H OpaqueLength 2 Size of the OpaqueData field. The value shall not be greater than 1024 bytes.

10+2H OpaqueData OpaqueLength
Free-form field, if present. The Responder may include Responder-specific information and/or information defined
by its transport.

10+L+2H+OpaqueLength Signature S

Signature of the GET_MEASUREMENTS Request and MEASUREMENTS response messages, excluding the signature
field and signed using the device private key (slot 0 leaf certificate private key). The Responder shall use the
asymmetric signing algorithm it selected during the last ALGORITHMS response message to the Requester and S
is the size of that asymmetric signing algorithm output.

9.3.2. Measurement block

Each Measurement block defined in the MEASUREMENTS response message shall contain a four-byte descriptor (offsets 0-3), followed by the Measurement Data corresponding to a particular
Measurement Index and Measurement Type. The blocks are ordered by Index.

The Measurement block format table shows the format for a measurement block:

Measurement block format

Offset Field Size (bytes) Value

0 Index 1
For MeasurementType=0-3, Index represents the firmware stage and incrementing of index represents bootstrapping of
firmware stages. For example, index 0 firmware measures index 1 firmware, and so on.

1 MeasurementType 1

[7]=0b: Hash
[7]=1b : Raw Bit Stream
[6:0]=00h: immutable ROM
[6:0]=01h: mutable firmware
[6:0]=02h: hardware configuration, such as straps, debug modes
[6:0]=03h : firmware configuration, e.g., configurable firmware policy

All other values reserved

2 MeasurementSpecification 1

A bit mask. The value shall indicate the measurement specification that the requested measurement follows and shall match
the selected measurement specification in the Algorithms message. See the Successful ALGORITHMS response message
table. Only one bit shall be set in the Measurement Block.

Bit 0=DMTF

All other bits are reserved.

3 MeasurementSize 1
Size of measurement, in bytes. When MeasurementType[7]=0b: Hash, the MeasurementSize shall be derived from the
measurement hash algorithm returned in the ALGORITHM response message.

4 Measurement
The
measurement
size

MeasurementSize bytes of cryptographic hash or raw bit stream, as indicated in MeasurementType[7].

9.3.3. Signature generation

Symbols that end with 1 represent the Responder-observed messages.

1. The Responder shall construct L1:

 L1=Concatenate(GET_MEASUREMENTS_REQUEST1, MEASUREMENTS_RESPONSE_WITHOUT_SIGNATURE1)

where:

Concatenate () is the standard concatenation function.
GET_MEASUREMENTS_REQUEST1 is the entire MEASUREMENTS request message under consideration, as seen by the Responder.

MEASUREMENTS_RESPONSE_WITHOUT_SIGNATURE1 is the entire MEASUREMENTS response message without the signature bytes, as sent by the Responder.

2. The Responder shall generate:

 Signature=Sign(SK, Hash1(L1))

where:

Sign is the asymmetric signing algorithm the Responder selected through the last ALGORITHMS response message sent by the Responder. See BaseAsymSel or ExtAsymSel fields in the
CHALLENGE request message table.
Hash1 is the hashing algorithm the Responder selected through the last ALGORITHMS response message sent by the Responder. See BaseHashSel or ExtHashSel fields in the
CHALLENGE request message table.
SK is the private Key associated with the Responder's slot 0 leaf certificate.

9.3.4. Signature verification

Symbols that end with 2 represent the Requester-observed messages.

1. The Requester shall create L2 as:

 L2= Concatenate(GET_MEASUREMENTS_REQUEST2, MEASUREMENTS_RESPONSE_WITHOUT_SIGNATURE2)

where:

Concatenate () is the standard concatenation function.
GET_MEASUREMENTS _REQUEST2 is the entire contents of the MEASUREMENTS request message under consideration, as sent by the Requester.
MEASUREMENTS_RESPONSE_WITHOUT_SIGNATURE2 is the entire contents of the MEASUREMENTS response message without the signature bytes, as received by the Requester.

2. The Requester shall perform:

 Verify(PK, Hash2(L2), Signature)

where:

PK is the public key associated with the slot 0 certificate of the Responder. PK is extracted from the CERTIFIATES response.
Verify is the asymmetric verification algorithm the Responder selected through the last ALGORITHMS response message as received by the Requester. See BaseAsymSel or
ExtAsymSel fields in the CHALLENGE request message table.
Hash2 is the hashing algorithm the Responder selected through the last ALGORITHMS response message sent as received by the Requester. See the BaseHashSel or ExtHashSel fields
in the CHALLENGE request message table.

9.4. ERROR response message

For an SPDM operation that results in an error, the Responder shall send an ERROR response message to the Requester.

The ERROR response message table shows the ERROR response format.

The Error code and error data table shows the detailed error code, error data, and extended error data.

The ResponseNotReady extended error data table shows the ResponseNotReady extended error data.

The Registry or standards body ID table shows the registry or standards body ID.

The ExtendedErrorData format definition for vendor or other standards-defined ERROR response message table shows the ExtendedErrorData format definition for vendor or other standards-defined
ERROR response message.

ERROR response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x7F=ERROR

2 Param1 1 Error Code. See the Error code and error data table.

3 Param2 1 Error Data. See the Error code and error data table.

4 ExtendedErrorData 0-32 Optional extended data. See the Error code and error data table.

Error code and error data

Error code Value Description Error data ExtendedErrorData

Reserved 00h Reserved Reserved Reserved

InvalidRequest 01h One or more request fields are invalid 0x00 No extended error data is provided.

Reserved 02h Reserved Reserved Reserved

Busy 03h
The Responder cannot respond now, but may
be able to respond in the future

0x00 No extended error data is provided.

UnexpectedRequest 04h
The Responder received an unexpected
request message. For example, CHALLENGE
before NEGOTIATE_ALGORITHMS.

0x00 No extended error data is provided.

Unspecified 05h Unspecified error occurred. 00h No extended error data is provided.

Reserved 06h Reserved 00h Reserved

Error code Value Description Error data ExtendedErrorData

UnsupportedRequest 07h
The RequestResponseCode in the Request
message is unsupported.

RequestResponseCode in the Request
message.

No extended error data is provided

Reserved 08h-40h Reserved Reserved Reserved

MajorVersionMismatch 41h
Requested SPDM major version is not
supported.

No extended error data provided.

ResponseNotReady 42h See RESPOND_IF_READY clause. See the ResponseNotReady extended error data
table.

Reserved 43h-FEh Reserved Reserved. Reserved

Vendor/Other Standards
Defined

FFh Vendor or Other Standards defined
This field shall indicate the registry or standard
body using one of the values in the ID column of
the Registry or standards body ID table.

See the ExtendedErrorData format definition
for vendor or other standards-defined
ERROR response message table for format
definition.

ResponseNotReady extended error data

Offset Field
Size
(bytes)

Value

0 RDTExponent 1

Exponent expressed in logarithmic (base 2 scale) to calculate RDT time in uS after which the Responder will be able to provide successful completion
response.
For example, the raw value 8 indicates that the Responder will be ready in 28=256 uS. Responder should use RDT to avoid continuous pinging and
issue the RESPOND_IF_READY request message table after RDT time.
For timing requirement details, See the Timing specification for SPDM messages table.

1 RequestCode 1 The request code that triggered this response.

2 Token 1 The opaque handle that the Requester shall pass in with the the RESPOND_IF_READY request message table request message.

3 RDTM 1

Multiplier used to compute WT_{Max} in uS to indicate the response may be dropped after this delay. The multiplier shall always be greater
than 1.
The Responder may also stop processing the initial request if the same Requester issues a different request.
For timing requirement details, See the Timing specification for SPDM messages table.

Registry or standards body ID

ID Vendor ID Len (bytes) Registry or standards body name Description

0x7D 2 USB Vendor is identified using USB's vendor ID.

0x7E 2 PCI-SIG Vendor is identified using PCI-SIG Vendor ID.

0x7F 4 IANA Vendor is identified using the Internet Assigned Numbers Authority's Private Enterprise Number (PEN).

ExtendedErrorData format definition for vendor or other standards-defined ERROR response message

Byte
Offset

Len Field name Description

0 1 Len

Length of the VendorID field.
If the ERROR is vendor defined, the value of this field shall equal the Vendor ID Len as described in the Registry or standards body ID table of the
corresponding registry or standard body name.
If the ERROR is defined by a registry or a standard, this field shall be zero, which also indicates the VendorID field is not present.
The registry or standards body name in the ERROR is indicated in the Error Data field, such as Param2, and is one of the values in the ID column
of the Registry or standards body ID table.

1 Len VendorID

The value of this field shall indicate the Vendor ID, as assigned by the registry or standards body. The length of this field is provided in the Registry
or standards body ID table. This field shall be in little endian format.
The registry or standards body name in the ERROR is indicated in the Error Data field, such as Param2, and is one of the values in the ID column
of the Registry or standards body ID table.

1+Len Variable OpaqueErrorData Defined by the vendor or other standards.

9.5. RESPOND_IF_READY request message

This request message shall ask for the response to the original request upon receipt of ResponseNotReady error code. If the response to the original request is ready, the Responder shall return that
response message. If the response to the original request is not ready, the Responder shall return the ERROR response message, set ErrorCode=ResponseNotReady and return the same token as the
previous ResponseNotReady response message.

Figure 9 — RESPOND_IF_READY flow leading to completion

The RESPOND_IF_READY request message table shows the RESPOND_IF_READY request message format.

RESPOND_IF_READY request message

Offset Field
Size
(bytes)

Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0xFF=RESPOND_IF_READY

2 RequestCode 1
The original request code that triggered the ResponseNotReady error code response. Shall match the request code returned as part of the
ResponseNotReady extended error data.

3 Token 1 The token that was returned as part of the ResponseNotReady extended error data.

10. SPDM messaging control and discovery examples

11. ANNEX A (informative)

The 1.0 revision of this specification will address scenarios where GET_VERSION, VERSION, GET_CAPABILITIES, CAPABILITIES, NEGOTIATE_ALGORITHMS and ALGORITHMS messages can be
optional.

In the v1.0 release, figures and tables will be renumbered.

12. ANNEX B - Leaf certificate example

Certificate:

Data:
 Version: 3 (0x2)
 Serial Number: 8 (0x8)
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: C=CA, ST=NC, L=city, O=ACME, OU=ACME Devices, CN=CA
 Validity
 Not Before: Jan 1 00:00:00 1970 GMT
 Not After : Dec 31 23:59:59 9999 GMT
 Subject: C=US, ST=NC, O=ACME Widget Manufacturing, OU=ACME Widget Manufacturing Unit, CN=w0123456789
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public-Key: (2048 bit)
 Modulus:
 00:ba:67:47:72:78:da:28:81:d9:81:9b:db:88:03:
 e1:10:a4:91:b8:48:ed:6b:70:3c:ec:a2:68:a9:3b:
 5f:78:fc:ae:4a:d1:1c:63:76:54:a8:40:31:26:7f:
 ff:3e:e0:bf:95:5c:4a:b4:6f:11:56:ca:c8:11:53:
 23:e1:1d:a2:7a:a5:f0:22:d8:b2:fb:43:da:dd:bd:
 52:6b:e6:a5:3f:0f:3b:60:b8:74:db:56:08:d9:ee:
 a0:30:4a:03:21:1e:ee:60:ad:e4:00:7a:6e:6b:32:
 1c:28:7e:9c:e8:c3:54:db:63:fd:1f:d1:46:20:9e:
 ef:80:88:00:5f:25:db:cf:43:46:c6:1f:50:19:7f:
 98:23:84:38:88:47:5d:51:8e:11:62:6f:0f:28:77:
 a7:20:0e:f3:74:27:82:70:a7:96:5b:1b:bb:10:e7:
 95:62:f5:37:4b:ba:20:4e:3c:c9:18:b2:cd:4b:58:
 70:ab:a2:bc:f6:2f:ed:2f:48:92:be:5a:cc:5c:5e:
 a8:ea:9d:60:e8:f8:85:7d:c0:0d:2f:6a:08:74:d1:
 2f:e8:5e:3d:b7:35:a6:1d:d2:a6:04:99:d3:90:43:
 66:35:e1:74:10:a8:97:3b:49:05:51:61:07:c6:08:
 01:1c:dc:a8:5f:9e:30:97:a8:18:6c:f9:b1:2c:56:
 e8:67
 Exponent: 65537 (0x10001)
 X509v3 extensions:

 X509v3 Basic Constraints:
 CA:FALSE
 X509v3 Key Usage:
 Digital Signature, Non Repudiation, Key Encipherment
 X509v3 Subject Alternative Name:
 othername:1.3.6.1.4.1.412.274.1;UTF8STRING:ACME:WIDGET:0123456789
 Signature Algorithm: ecdsa-with-SHA256
 Signature Value:
 30:45:02:21:00:fc:8f:b0:ad:6f:2d:c3:2a:7e:92:6d:29:1d:
 c7:fc:0d:48:b0:c6:39:5e:c8:76:d6:40:9a:12:46:c3:39:0e:
 36:02:20:1a:ea:3a:59:ca:1e:bc:6d:6e:61:79:af:a2:05:7c:
 7d:da:41:a9:45:6d:cb:04:49:43:e6:0b:a8:8d:cd:da:e

13. Change log

Version Date Description

0.9.0 2019-05-30 First draft version.

14. Bibliography

DMTF DSP4014, DMTF Process for Working Bodies 2.6, https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.6.pdf

! Download

SPDMSpecification"

