
1 Document Identifier: DSP0289

2 Date: 2024-10-10

3 Version: 1.0.0WIP80

4 Authorization Specification

7 Supersedes: None

8 Document Class: Normative

9 Document Status: Work in Progress

10 Document Language: en-US

Information for Work-in-Progress version:

5 IMPORTANT: This document is not a standard. It does not necessarily reflect the views of DMTF or its

members. Because this document is a Work in Progress, this document may still change, perhaps

profoundly and without notice. This document is available for public review and comment until

superseded.

6 Provide any comments through the DMTF Feedback Portal: https://www.dmtf.org/standards/

feedback

https://www.dmtf.org/standards/feedback
https://www.dmtf.org/standards/feedback

11 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents for uses consistent with this purpose, provided that correct attribution is given. As DMTF

specifications may be revised from time to time, the particular version and release date should always be

noted.

12 Implementation of certain elements of this standard or proposed standard may be subject to third-party

patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations

to users of the standard as to the existence of such rights and is not responsible to recognize, disclose, or

identify any or all such third-party patent right owners or claimants, nor for any incomplete or inaccurate

identification or disclosure of such rights, owners, or claimants. DMTF shall have no liability to any party,

in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, disclose, or

identify any such third-party patent rights, or for such party's reliance on the standard or incorporation

thereof in its products, protocols, or testing procedures. DMTF shall have no liability to any party

implementing such standards, whether such implementation is foreseeable or not, nor to any patent

owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

13 For information about patents held by third-parties which have notified DMTF that, in their opinion, such

patents may relate to or impact implementations of DMTF standards, visit https://www.dmtf.org/about/

policies/disclosures.

14 This document's normative language is English. Translation into other languages is permitted.

Copyright Notice

Copyright © 2024 DMTF. All rights reserved.

Authorization Specification DSP0289

2 Work in Progress Version 1.0.0WIP80

https://www.dmtf.org/about/policies/disclosures
https://www.dmtf.org/about/policies/disclosures

15 CONTENTS

1 Foreword . 6

1.1 Acknowledgments . 6

2 Introduction . 7

2.1 Document conventions . 7

2.1.1 Reserved and unassigned values . 7

2.1.2 Byte ordering. 7

2.1.2.1 Default Byte Order . 7

2.1.2.2 Octet string byte order . 7

2.1.2.3 Signature byte order . 8

2.1.3 Text or string encoding . 8

2.1.4 Other conventions . 8

3 Scope. 9

4 Normative references. 10

5 Terms and definitions . 12

6 Symbols and abbreviated terms . 14

7 Notations . 15

8 SPDM authorization architecture . 16

8.1 Architecture overview . 16

8.2 Authorization version . 16

8.3 Authorization flows . 16

8.3.1 Credential provisioning overview . 17

8.3.2 Runtime authorization overview . 17

8.4 Credentials . 18

8.5 Credential policies . 20

8.5.1 DSP0289 Credential Policy . 21

8.5.1.1 DSP0289 Additional Credential Policy Requirements . 24

8.6 Initial Provisioning . 25

8.7 Discovery. 25

8.8 Authorization Process . 26

8.8.1 User-Specific Authorization Process. 26

8.8.1.1 USAP error handling, requirement and notes. 28

8.8.2 SPDM Endpoint Authorization Process. 29

8.8.2.1 SEAP error handling, requirement and notes . 32

8.8.3 Other error handling, requirements and notes . 32

8.8.4 Authorization Tag . 32

8.8.4.1 Authorization Tag Signature Generation and Verification . 33

9 SPDM authorization messages . 35

9.1 Authorization messages overview . 35

9.1.1 Bi-directional Authorization message processing . 35

9.1.2 Requirements for Authorization Initiators . 35

9.1.3 Requirements for Authorization Targets . 36

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 3

9.1.4 Authorization Messages bits-to-bytes mapping . 36

9.1.5 Version encoding. 36

9.1.6 Authorization Record. 38

9.1.7 Generic Authorization message format . 38

9.2 Authorization messages . 39

9.2.1 Authorization message request codes . 39

9.2.2 Authorization message response codes . 41

9.2.3 Error handling . 42

9.2.3.1 AUTH_ERROR response message . 42

9.2.4 Discovery message. 43

9.2.4.1 GET_AUTH_VERSION request and AUTH_VERSION response messages 44

9.2.4.2 SELECT_AUTH_VERSION request and SELECT_AUTH_VERSION_RSP response

messages . 45

9.2.4.3 GET_AUTH_CAPABILITIES request and AUTH_CAPABILITIES response messages. . 46

9.2.5 Credential provisioning . 48

9.2.5.1 SET_CREDENTIAL_INFO request and SET_CREDENTIAL_INFO_RSP response

messages . 48

9.2.5.1.1 Additional Requirements on SET_CREDENTIAL_INFO . 49

9.2.5.2 GET_CREDENTIAL_INFO request and GET_CREDENTIAL_INFO_RSP response

messages . 49

9.2.5.3 Credential provisioning authorization requirements . 50

9.2.6 Credential policy provisioning and management . 50

9.2.6.1 SET_CREDENTIAL_POLICY request and SET_CREDENTIAL_POLICY_RSP response

messages . 50

9.2.6.1.1 Additional requirements on SET_CREDENTIAL_POLICY. 51

9.2.6.2 GET_CREDENTIAL_POLICY request and GET_CREDENTIAL_POLICY_RSP response

messages . 52

9.2.6.3 Credential policy authorization requirements . 52

9.2.7 Authorization state management . 52

9.2.7.1 START_AUTH request and START_AUTH_RSP response messages 52

9.2.7.2 END_AUTH request and END_AUTH_RSP response messages 53

9.2.7.3 ELEVATE_PRIVILEGE request and ELEVATE_PRIVILEGE_RSP response messages. 54

9.2.7.4 END_ELEVATED_PRIVILEGE request and END_ELEVATED_PRIVILEGE_RSP

response message . 55

9.2.8 Basic Management . 55

9.2.8.1 AUTH_RESET_TO_DEFAULT request and AUTH_DEFAULTS_APPLIED response . . . 55

9.3 Timing Requirements. 57

9.3.1 Authorization Messages Timing . 58

9.3.2 All Messages requiring Authorization . 58

10 Authorization Opaque Data Structures . 59

10.1 General Authorization Opaque Data Structure . 59

10.2 AODS IDs . 60

10.3 INVOKE_SEAP AODS . 60

Authorization Specification DSP0289

4 Work in Progress Version 1.0.0WIP80

10.4 SEAP_INVOKED AODS . 61

10.5 SEAP_SUCCESS AODS . 61

10.6 AUTH_HELLO AODS . 62

11 Cryptographic Operations . 63

11.1 Signature Generation and Validation . 63

11.1.1 Signature algorithm references . 63

11.1.2 Signature generation . 63

11.1.2.1 RSA and ECDSA signing algorithms . 64

11.1.2.2 EdDSA signing algorithms . 65

11.1.2.2.1 Ed25519 sign . 65

11.1.2.2.2 Ed448 sign . 65

11.1.2.3 SM2 signing algorithm. 65

11.1.3 Signature verification . 65

11.1.3.1 RSA and ECDSA signature verification algorithms. 66

11.1.3.2 EdDSA signature verification algorithms. 66

11.1.3.2.1 Ed25519 verify . 67

11.1.3.2.2 Ed448 verify . 67

11.1.3.3 SM2 signature verification algorithm. 67

12 Authorization event types. 68

12.1 Event type details . 68

12.1.1 Credential info Changed event . 68

12.1.2 Credential policy changed event . 69

13 ANNEX A (informative) change log . 70

13.1 Version 1.0.0 (2024-10-10) . 70

14 Bibliography . 71

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 5

16 1 Foreword

17 The Security Protocols and Data Models (SPDM) Working Group prepared the Authorization Specification

(DSP0289).

18 DMTF is a not-for-profit association of industry members that promotes enterprise and systems management and

interoperability. For information about DMTF, visit dmtf.org.

19 1.1 Acknowledgments

20 DMTF acknowledges the following individuals for their contributions to this document:

Authorization Specification DSP0289

6 Work in Progress Version 1.0.0WIP80

https://www.dmtf.org/

21 2 Introduction

22 The Security Protocol and Data Model (SPDM) Authorization Specification defines messages, data objects, and

sequences for performing authorized message exchanges. The description of message exchanges includes

authorization of messages, provisioning of authorization credentials and their policies, management of authorization

state and other related capabilities.

23 2.1 Document conventions

• Document titles appear in italics.

• The first occurrence of each important term appears in italics with a link to its definition.

• ABNF rules appear in a monospaced font.

24 2.1.1 Reserved and unassigned values

25 Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other numeric

ranges are reserved for future definition by DMTF.

26 Unless otherwise specified, field values marked as Reserved shall be written as zero (0), ignored when read, not

modified, and not interpreted as an error if not zero.

27 2.1.2 Byte ordering

28 This section describes different byte ordering.

29 2.1.2.1 Default Byte Order

30 Unless otherwise specified, for all SPDM specifications byte ordering of multi-byte numeric fields or multi-byte bit

fields is little endian (that is, the lowest byte offset holds the least significant byte, and higher offsets hold the more

significant bytes).

31 2.1.2.2 Octet string byte order

32 A string of octets is conventionally written from left to right. Also by convention, byte zero of the octet string shall be

the leftmost byte of the octet, byte 1 of the octet string shall be the second leftmost byte of the octet, and this pattern

shall continue until the very last byte. When placing an octet string into an Authorization field, the ith byte of the octet

string shall be placed in the ith offset of that field.

33 For example, if placing an octet stream consisting of "0xAA 0xCB 0x9F 0xD8" into LongString field, then offset 0

(the lowest offset) of LongString will contain 0xAA, offset 1 of LongString will contain 0xCB, offset 2 of LongString

will contain 0x9F, and offset 3 of LongString will contain 0xD8.

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 7

34 2.1.2.3 Signature byte order

35 For fields or values containing a signature, this specification attempts to preserve the byte order of the signature as

the specification of a given signature algorithm defines. Most signature specifications define a string of octets as the

format of the signature, and others may explicitly state the endianness such as in the specification for Edwards-

Curve Digital Signature Algorithm. Unless otherwise specified, the byte order of a signature for a given signature

algorithm shall be octet string byte order.

36 2.1.3 Text or string encoding

37 When a value is indicated as a text or string data type, the encoding for the text or string shall be an array of

contiguous bytes whose values are ordered. The first byte of the array resides at the lowest offset, and the last byte

of the array is at the highest offset. The order of characters in the array shall be such that the leftmost character of

the string is placed at the first byte in the array, the second leftmost character is placed in the second byte, and so

forth until the last character is placed in the last byte.

38 Each byte in the array shall be the numeric value that represents that character, as ASCII — ISO/IEC 646:1991

defines.

39 Table 1 — "spdm" encoding example shows an encoding example of the string "spdm":

40 Table 1 — "spdm" encoding example

Offset Character Value

0 s 0x73

1 p 0x70

2 d 0x64

3 m 0x6D

41 2.1.4 Other conventions

42 Unless otherwise specified, all figures are informative.

Authorization Specification DSP0289

8 Work in Progress Version 1.0.0WIP80

43 3 Scope

44 This specification describes how to use messages, data objects, and sequences to exchange authorized messages

between two entities over a variety of transports and physical media. This specification contains the message

exchanges, sequence diagrams, message formats, and other relevant semantics for such message exchanges,

including authorization of arbitrary messages.

45 Other specifications define the mapping of these messages to different transports and physical media. This

specification provides information to enable security policy enforcement but does not specify individual policy

decisions.

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 9

46 4 Normative references

47 The following documents are indispensable for the application of this specification. For dated or versioned

references, only the edition cited, including any corrigenda or DMTF update versions, applies. For references without

date or version, the latest published edition of the referenced document (including any corrigenda or DMTF update

versions) applies.

• DMTF DSP0004, Common Information Model (CIM) Metamodel, https://www.dmtf.org/dsp/DSP0004

• DMTF DSP0223, Generic Operations, https://www.dmtf.org/dsp/DSP0223

• DMTF DSP0274, Security Protocol and Data Model (SPDM) Specification, https://www.dmtf.org/dsp/DSP0274

• DMTF DSP1001, Management Profile Usage Guide, https://www.dmtf.org/dsp/DSP1001

• ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents - 2021

(9th edition)

• IETF RFC 4716, The Secure Shell (SSH) Public Key File Format, November 2006

• IETF RFC 7250, Using Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport Layer

Security (DTLS), June 2014

• TCG Algorithm Registry, Family "2.0", Level 00 Revision 01.32, June 25, 2020

• IETF RFC 8017, PKCS #1: RSA Cryptography Specifications Version 2.2, November, 2016

• IETF RFC 8032, Edwards-Curve Digital Signature Algorithm (EdDSA), January 2017

• IETF RFC 8998, ShangMi (SM) Cipher Suites for TLS 1.3, March 2021

• GB/T 32918.1-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 1: General, August 2016

• GB/T 32918.2-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 2: Digital signature algorithm, August 2016

• GB/T 32918.3-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 3: Key exchange protocol, August 2016

• GB/T 32918.4-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 4: Public key encryption algorithm, August 2016

• GB/T 32918.5-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 5: Parameter definition, August 2016

• GB/T 32905-2016, Information security technology—SM3 cryptographic hash algorithm, August 2016

• GB/T 32907-2016, Information security technology—SM4 block cipher algorithm, August 2016

• ECDSA

◦ Section 6, The Elliptic Curve Digital Signature Algorithm (ECDSA) in FIPS PUB 186-5 Digital Signature

Standard (DSS)

◦ NIST SP 800-186 Recommendations for Discrete Logarithm-based Cryptography: Elliptic Curve Domain

Parameters

◦ IETF RFC 6979, Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital

Signature Algorithm (ECDSA), August 2013

Authorization Specification DSP0289

10 Work in Progress Version 1.0.0WIP80

https://www.dmtf.org/dsp/DSP0004
https://www.dmtf.org/dsp/DSP0223
https://www.dmtf.org/dsp/DSP0274
https://www.dmtf.org/dsp/DSP1001
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://tools.ietf.org/html/rfc4716
https://tools.ietf.org/html/rfc7250
https://tools.ietf.org/html/rfc7250
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8032
https://tools.ietf.org/html/rfc8998
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf
https://tools.ietf.org/html/rfc6979
https://tools.ietf.org/html/rfc6979

• SHA2-256, SHA2-384, and SHA2-512

◦ FIPS PUB 180-4 Secure Hash Standard (SHS)

• SHA3-256, SHA3-384, and SHA3-512

◦ FIPS PUB 202 SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions

• ASCII — ISO/IEC 646:1991, 09/1991

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 11

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://www.iso.org/standard/4777.html

48 5 Terms and definitions

49 In this document, some terms have a specific meaning beyond the normal English meaning. This clause defines

those terms.

50 The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), "may",

"need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described in ISO/IEC

Directives, Part 2, Clause 7. The terms in parentheses are alternatives for the preceding term, for use in exceptional

cases when the preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7

specifies additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal

English meaning.

51 The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as described in

ISO/IEC Directives, Part 2, Clause 6.

52 The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC Directives,

Part 2, Clause 3. In this document, clauses, subclauses, and annexes labeled "(informative)" do not contain

normative content. Notes and examples are always informative elements.

53 The terms that DSP0004, DSP0223, DSP0274, and DSP1001 define also apply to this document.

54 This specification uses these terms:

Term Definition

Authorization Process of determining whether an entity has the privilege to perform a protected action.

Authorization Initiator
A logical entity that triggers the process of granting permission or approval for accessing a

protected resource.

SPDM authorization message Unit of communication when using messages defined in this specification.

Endpoint Logical entity that communicates with other endpoints over one or more transport protocols.

Byte Eight-bit quantity. Also known as an octet.

Credential A piece of information used to verify an entities identity, such as an asymmetric public key.

Message See SPDM authorization message.

Protected Resource A software or hardware resource that requires authorization to be operated upon.

User An Authorization Initiator that is not an SPDM endpoint of the corresponding SPDM session.

Authorization target
A logical entity that determines if the Authorization Initiator has the permission(s) and

privilege level(s) to access the protected resource.

Authorization session
An SPDM session whose privilege levels have been escalated on behalf of either a User or

SPDM endpoint.

Authorization Specification DSP0289

12 Work in Progress Version 1.0.0WIP80

Term Definition

User-Specific Authorization Session An Authorization session that is escalated specifically on behalf of a specific User.

Authorization message payload

Portion of the message body of an authorization message. This portion of the message is

separate from those fields and elements that identify the authorization request and response

codes and reserved fields.

Concurrent SPDM session
Simultaneous or parallel SPDM sessions between an Authorization Initiator and an

Authorization Target.

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 13

55 6 Symbols and abbreviated terms

56 The abbreviations that DSP0004, DSP0223, and DSP1001 define apply to this document.

57 The following additional abbreviations are used in this document.

Abbreviation Definition

AODS Authorization ODS

AUTH Authorization

ODS Opaque Data Structure

SEAP SPDM Endpoint Authorization Process

SPDM Security Protocol and Data Model

USAP User-Specific Authorization Process

USAS User-Specific Authorization Session

Authorization Specification DSP0289

14 Work in Progress Version 1.0.0WIP80

58 7 Notations

59 The SPDM authorization specification uses the following notations:

Notation Description

Concatenate()
The concatenation function Concatenate(a, b, ..., z) , where the first entry occupies

the least-significant bits and the last entry occupies the most-significant bits.

M:N

In field descriptions, this notation typically represents a range of byte offsets starting

from byte M and continuing to and including byte N (M ≤ N).

The lowest offset is on the left. The highest offset is on the right.

[4]

Square brackets around a number typically indicate a bit offset.

Bit offsets are zero-based values. That is, the least significant bit ([LSb]) offset = 0.

[M:N]

A range of bit offsets where M is greater than or equal to N.

The most significant bit is on the left, and the least significant bit is on the right.

1b
A lowercase b after a number consisting of 0 s and 1 s indicates that the number is in

binary format.

0x12A Hexadecimal, as indicated by the leading 0x .

N+ Variable-length byte range that starts at byte offset N.

[${message_name}] . ${field_name}

Used to indicate a field in a message.

• ${message_name} is the name of the request or response message.

• ${field_name} is the name of the field in the request or response message. An

asterisk (*) instead of a field name means all fields in that message except for any

conditional fields that are empty.

LenX

This notation is used only in tables and indicate the length of the corresponding field

only for that table. The value X can be a number greater than 0 especially if more than

one of this notation is used in the same table for multiple fields.

This notation is not used outside of a table and LenX in one table has no relationship

for the same LenX in a different table.

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 15

60 8 SPDM authorization architecture

61 This SPDM authorization architecture serves as a foundation for managing access to a protected resource on an

endpoint. The message exchanges defined by this specification can be exchanged between two SPDM endpoints.

The messages are defined in a generic fashion that allows them to be communicated across different physical

mediums and over different transport protocols.

62 8.1 Architecture overview

63 The specification-defined message exchanges enable an entity to:

• Discover capabilities related to authorization in an endpoint.

• Discover and securely provision credentials and their policies into an endpoint.

• Securely manage endpoint state related to authorization.

• Authorize access to protected resource in an endpoint.

64 These capabilities are built on top of well-known and established security practices across the computing industry.

The following clauses provide further details of the message exchanges related to authorization.

65 8.2 Authorization version

66 The AuthVersion field in the SELECT_AUTH_VERSION message shall indicate the version of the Authorization

specification that the format of an Authorization message adheres to.

67 For example, if the version of this specification is 1.2, the value of AuthVersion is 0x12 , which also corresponds to

an Authorization Major Version of 1 and an Authorization Minor Version of 2.

68 The version of this specification can be found on the title page and in the footer of the other pages in this document.

69 The AuthVersion for the version of this specification shall be 0x10 .

70 The AuthVersionString shall be a string formed by concatenating the major version, a period ("."), and the minor

version. For example, if the version of this specification is 1.2.3, then AuthVersionString is "1.2" .

71 8.3 Authorization flows

72 At a high level, the authorization flow involves these processes:

• Credential provisioning

• Runtime authorization

Authorization Specification DSP0289

16 Work in Progress Version 1.0.0WIP80

73 8.3.1 Credential provisioning overview

74 Credential provisioning is the process where an endpoint is securely equipped with credential. In the context of this

specification, a credential consists of an asymmetric key pair. The specifics of the key generation are outside the

scope of the specification. For an asymmetric credential, the public portion is provisioned into the endpoint and the

private key is held securely by the Authorization Initiator. The credential is also associated with a policy that

describes the privileges, scope of access, lifetime or other access related attributes, to a protected resource. The

specification defines a set of messages by which credentials and their policies can be securely provisioned into an

endpoint with protected resources, typically an SPDM endpoint.

75 8.3.2 Runtime authorization overview

76 Runtime authorization is the process by which an Authorization Initiator, typically an SPDM endpoint, interacts with

another endpoint to gain access to a protected resource at runtime. The endpoints exchange messages defined in

this specification to discover capabilities related to authorization such as supported cryptographic algorithms, number

of provisioned credentials and other related information. To gain access to a protected resource, the endpoint with

the protected resource challenges the Authorization Initiator, who signs the challenge along with a message to be

authorized, with the private key that it holds. The signature is then verified, and the credential checked against its

policy, to determine if the message has the required privileges or access to operate on the protected resource.

77 Note that the specification does not mandate an Authorization Initiator be an SPDM endpoint, however the

interactions specified are between two SPDM endpoints. In cases where an Authorization Initiator is not an SPDM

endpoint, it is expected that an SPDM endpoint acts as a proxy to the initiator to facilitate communication to the

endpoint with the protected resource.

78 Figure 1 — Model with SPDM endpoint as Authorization Initiator shows a model where an SPDM endpoint acts as an

Authorization Initiator. Figure 2 — Model with external Authorization Initiator with SPDM endpoint proxy shows a

model where the Authorization Initiator is an entity that is not an SPDM endpoint, but communicates with the

protected resource via a proxy SPDM endpoint.

79 Figure 1 — Model with SPDM endpoint as Authorization Initiator

80

Authorization Initiator Authorization Target

SPDM Secure Session

81

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 17

82 Figure 2 — Model with external Authorization Initiator with SPDM endpoint proxy

83

Authorization Initiator SPDM Proxy Endpoint Authorization Target

SPDM Secure SessionStandard/Proprietary protocol

84 8.4 Credentials

85 In the context of this specification, a credential consists of an asymmetric key pair. See the credential provisioning

overview clause for how credentials are provisioned into an endpoint.

86 A credential is associated with an identifier, type, cryptographic algorithms, credential data and a credential slot. A

credential slot is a logical location that holds a credential structure. An endpoint which supports provisioning

credentials shall support a minimum of 8 credential slots. Credential slots are identified by the CredentialID . The

mandatory 8 credential slots shall have CredentialID of 0 through 7 inclusive. The SET_CREDENTIAL_INFO command

shall be used to provision credentials into a credential slot and shall use the structure defined in credential structure.

Provisioning of slot 0 should only be done in a trusted environment (such as a secure manufacturing environment) as

Initial Provisioning describes. All other slots may be provisioned in a trusted environment or use a credential already

provisioned in the endpoint to authorize the SET_CREDENTIAL_INFO command in an untrusted environment.

Credentials should be stored by the endpoint in integrity protected storage. An endpoint may use the credential

structure as defined in the specification or use an implementation-specific data structure to store credentials.

87 Table 2 — Credential Structure describes the structure and format for a credential.

88 Table 2 — Credential Structure

Byte offset Field Size (bytes) Description

0 StructVersion 1

Bits [7:4] - Major Version

Bits [3:0] - Minor Version

For this version of the specification, the value shall

be 0x10

1 CredentialType 1

The type of the credential.

• 0x1 - Asymmetric Key.

Shall be 0x1 for this version of the specification. All

other values are reserved.

Authorization Specification DSP0289

18 Work in Progress Version 1.0.0WIP80

Byte offset Field Size (bytes) Description

2 CredentialID 2

A unique identifier to identify the credential and the

credential slot. The value of 0xFFFF shall be

reserved unless other parts of this specification

defines the use for this value.

4 BaseAlgo 4

When CredentialType is 0x1 :

• Let SigLen be the size of the signature in bytes.

Only one of the following bits shall be set.

• Byte 0 Bit 0. TPM_ALG_RSASSA_2048 where

SigLen =256.

• Byte 0 Bit 1. TPM_ALG_RSAPSS_2048 where

SigLen =256.

• Byte 0 Bit 2. TPM_ALG_RSASSA_3072 where

SigLen =384.

• Byte 0 Bit 3. TPM_ALG_RSAPSS_3072 where

SigLen =384.

• Byte 0 Bit 4.

TPM_ALG_ECDSA_ECC_NIST_P256 where

SigLen =64 (32-byte r followed by 32-byte s).

• Byte 0 Bit 5. TPM_ALG_RSASSA_4096 where

SigLen =512.

• Byte 0 Bit 6. TPM_ALG_RSAPSS_4096 where

SigLen =512.

• Byte 0 Bit 7.

TPM_ALG_ECDSA_ECC_NIST_P384 where

SigLen =96 (48-byte r followed by 48-byte s).

• Byte 1 Bit 0.

TPM_ALG_ECDSA_ECC_NIST_P521 where

SigLen =132 (66-byte r followed by 66-byte s).

• Byte 1 Bit 1. TPM_ALG_SM2_ECC_SM2_P256

where SigLen =64 (32-byte SM2_R followed by

32-byte SM2_S).

• Byte 1 Bit 2. EdDSA ed25519 where SigLen =64

(32-byte R followed by 32-byte S).

• Byte 1 Bit 3. EdDSA ed448 where SigLen =114

(57-byte R followed by 57-byte S).

• All other values reserved.

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 19

Byte offset Field Size (bytes) Description

8 BaseHashAlgo 4

When CredentialType is 0x1 , only one of the

following bits shall be set:

• Byte 0 Bit 0. TPM_ALG_SHA_256

• Byte 0 Bit 1. TPM_ALG_SHA_384

• Byte 0 Bit 2. TPM_ALG_SHA_512

• Byte 0 Bit 3. TPM_ALG_SHA3_256

• Byte 0 Bit 4. TPM_ALG_SHA3_384

• Byte 0 Bit 5. TPM_ALG_SHA3_512

• Byte 0 Bit 6. TPM_ALG_SM3_256

• All other values reserved.

12 Reserved 4 Reserved.

16 CredentialDataSize 2 Size of Credential data in bytes.

18 CredentialData CredentialDataSize

When CredentialType is 0x1 :

• This field shall contain the public key in the

SubjectPublicKeyInfo format specified by RFC

7250.

89 8.5 Credential policies

90 All credentials shall be associated with an authorization policy. A credential shall not be usable for authorization

without an associated policy. A policy shall be associated with a credential using the SET_CREDENTIAL_POLICY

command. For the credential in slot 0, the command should only be sent in a trusted environment (such as a secure

manufacturing environment) and shall not be modified outside a trusted environment without appropriate

authorization. For the credential in slot 0, at least one policy shall be provisioned in a trusted environment. For

credentials in other slots, SET_CREDENTIAL_POLICY may be used in a trusted environment (such as a secure

manufacturing environment) or use a credential already provisioned in the endpoint to authorize the command.

Effectively, credential policies for slots other than slot 0 may be protected resources themselves. Policies should be

stored by the endpoint in integrity protected storage. An endpoint may use the Policy List structure as defined in the

specification or use an implementation-specific data structure to store credential policies.

91 Table 3 — Policy List describes the structure and format for a list of policies.

92 Table 3 — Policy List

Byte Offset Field Size (bytes) Description

0 CredentialID 2
A unique identifier to identify the

credential and the credential slot.

2 NumPolicies 2

Shall be the number of policies listed

in the Policies field. The value of

this field shall be at least one.

Authorization Specification DSP0289

20 Work in Progress Version 1.0.0WIP80

Byte Offset Field Size (bytes) Description

4 Policies Variable
List of policies as defined by Table 4

— Policy Structure.

93 Table 4 — Policy Structure describes the structure and format for a policy.

94 Table 4 — Policy Structure

Byte Offset Field Size (bytes) Description

0 PolicyOwnerID Len0

This field shall indicate the owner of

the policy. The size and format of this

field shall be the same as the SVH as

SPDM defines.

Len0 PolicyLen 2 Shall be the length of Policy .

2 + Len0 Policy PolicyLen

This field indicates the policy as

PolicyOwnerID defines. The

PolicyOwnerID shall define the size

and format of this field.

If PolicyOwnerID is DSP0289 using

DMTF-DSP as the ID in the SVH ,

the structure of this field is defined in

Table 5 — DSP0289 Policy Structure.

95 Table 5 — DSP0289 Policy Structure describes the structure and format for DMTF defined policy.

96 Table 5 — DSP0289 Policy Structure

Byte Offset Field Size (bytes) Description

0 PolicyType 2

Policy Type column in Table 7 —

DSP0289 General Policy Definitions

shall define the value for this field.

2 PolicyLen 2

Table 7 — DSP0289 General Policy

Definitions shall define the value of

this field corresponding to

PolicyType .

4 PolicyValue PolicyLen

Table 7 — DSP0289 General Policy

Definitions shall define the value of

this field corresponding to

PolicyType .

97 8.5.1 DSP0289 Credential Policy

98 This section defines the privileges for commands, actions and other resources that this specification defines. Each

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 21

credential ID has an associated policy. An Authorization initiator uses SET_CREDENTIAL_POLICY command to change

the policy associated with the Credential ID provided in the request.

99 This section uses the term, "given Credential ID" to refer to the Credential ID used in many scenarios. In general

there are two types of credential IDs: the Credential ID populated in the Credential ID field, if present, of an

Authorization request message and the requesting Credential ID of a message. These two credential IDs are not

always the same for a message. When authorizing a message, the given Credential ID is the Credential ID of the

Authorization initiator of the corresponding message. After authorization succeeds and when fulfilling the request of

an Authorization request message with a Credential ID field present, the term, given Credential ID, refers to the

Credential ID populated in the Credential ID field of the corresponding request message.

100 The tables in this section are structured into different field types:

• Privilege. A privilege field type is a single bit where setting a single bit grants the ability to perform the

corresponding action and clearing the bit revokes the ability to perform the corresponding action.

• Allowable. An allowable is a field consisting of one or more bits where setting one or more bits allows the use of

one or more characteristics (usually configuration parameters) associated with that field.

101 Lastly, all Credential IDs can modify their own credential information limited by their associated credential policy. All

Credential IDs can retrieve their own Credential policy or revoke their own privileges for all fields of Privilege field

type.

102 Table 6 — DSP0289 Policy Types lists all the policies specific to this specification. The values in the Policy Type

column shall map to the PolicyType as Table 5 defines.

103 Table 6 — DSP0289 Policy Types

Policy Type Policy Name Description

0 Reserved Reserved

1 GeneralPolicy

This policy type governs the possible actions an Authorization initiator can perform that are specific

to this specification. The format and size of PolicyValue shall be the format and size as Table 7 —

DSP0289 General Policy Definitions defines.

104 Table 7 — DSP0289 General Policy Definitions defines the credentials policies for the resources (for examples,

commands, actions and more) that this specification defines.

105 Table 7 — DSP0289 General Policy Definitions

Byte

Offset
Field Size (bytes)

Field

Type
Description

0 AllowedBaseAlgo 4 Allowable

The format of this field shall be the same as BaseAlgo in Table 2 —

Credential Structure. This field reflects the allowed base algorithms the

given Credential ID can use.

If a bit is set, the given Credential ID shall be capable of utilizing the

corresponding algorithm. If a bit is not set, the given Credential ID shall be

prohibited from utilizing the corresponding algorithm.

At least one bit shall be set.

Authorization Specification DSP0289

22 Work in Progress Version 1.0.0WIP80

Byte

Offset
Field Size (bytes)

Field

Type
Description

4 AllowedBaseHashAlgo 4 Allowable

The format of this field shall be the same as BaseHashAlgo in Table 2 —

Credential Structure. This field reflects the allowed base hash algorithms

the given Credential ID can use.

If a bit is set, the given Credential ID shall be capable of utilizing the

corresponding hash. If a bit is not set, the given Credential ID shall be

prohibited from utilizing the corresponding hash.

At least one bit shall be set.

8 CredentialPrivileges 2
The format of this field shall be the format as Table 8 — DSP0289

Credential Policy Bits Definitions defines.

10 AuthProcessPrivileges 1

The format of this field shall be the format as Table 9 — DSP0289

Authorization Policy Bits Definition defines.

At least one bit should be set for the Authorization target to authorize any

messages for the given Credential ID. Thus, when no bits are set, the

Authorization target cannot authorize any messages for the given

Credential ID which effectively disables the use of the given Credential ID.

106 Table 8 — DSP0289 Credential Policy Bits Definition defines the credentials provisioning policies.

107 Table 8 — DSP0289 Credential Policy Bits Definition

Byte

Offset
Bit Offset Field

Field

Type
Description

0 0 CredentialInfoPrivilege Privilege

If this bit is set, the given Credential ID shall be capable of modifying or

retrieving credential information of other Credential IDs through

SET_CREDENTIAL_INFO and GET_CREDENTIAL_INFO requests.

0 1 GrantOtherPolicyPrivilege Privilege

If this bit is set, the given Credential ID shall be capable of only granting

privilege for all fields of Privilege field type for other Credential IDs

through the SET_CREDENTIAL_POLICY request.

Also, setting this bit also allows the given Credential ID to modify all

fields of Allowable field type in any manner.

If this bit is set, the QueryPolicyPrivilege shall also be set.

0 2 RevokeOtherPolicyPrivilege Privilege

If this bit is set, the given Credential ID shall be capable of only

revoking privileges for all fields of Privilege field type for other

Credential IDs through the SET_CREDENTIAL_POLICY request.

If this bit is set, the QueryPolicyPrivilege shall also be set.

0 3 QueryPolicyPrivilege Privilege

If this bit is set, the given Credential ID shall be capable of retrieving

credential policy of other Credential IDs through

GET_CREDENTIAL_POLICY request.

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 23

Byte

Offset
Bit Offset Field

Field

Type
Description

0 4 ResetToDefaultsPrivilege Privilege

If this bit is set, the given Credential ID shall be capable of resetting the

Authorization target back to default values and behavior using the

AUTH_RESET_TO_DEFAULT request.

0 [7:5] Reserved Reserved Reserved.

1 [7:0] Reserved Reserved Reserved.

108 Table 9 — Authorization Process Policy Bits Definition defines the authorization process policies.

109 Table 9 — DSP0289 Authorization Process Policy Bits Definition

Byte Offset Bit Offset Field Field Type Description

0 0 PrivilegeSEAP Privilege
If this bit is set, the given Credential ID shall be capable of invoking the SEAP

process as an Authorization initiator.

0 1 PrivilegeUSAP Privilege
If this bit is set, the given Credential ID shall be capable of being a user in the

USAP Process.

0 [7:2] Reserved Reserved Reserved.

110 8.5.1.1 DSP0289 Additional Credential Policy Requirements

111 When changing the credential policy for a given Credential ID, the new policy settings shall take effect immediately

for that Credential ID. The authorization target should enforce the new policy in the least invasive manner possible.

For example, if the new settings grant or revoke a privilege in CredentialInfoPrivilege field, the Authorization target

can apply the new settings to incoming messages without ending an active Authorization process. In another

example, if a bit is cleared in AllowedBaseAlgo and an active Authorization process is using the corresponding

asymmetric algorithm, then the Authorization target will have to fail authorization for all messages requiring

authorization until the Authorization initiator changes the credential ID parameters back to compliance with the new

policy.

112 For some policy changes, there are some specific requirements. If a new policy clears a bit in an Allowable field type

and the current credential ID parameters associated with that Credential ID uses the corresponding bit, the

Authorization target shall still allow the Authorization initiator to use the existing credential ID parameters to change

the parameters to comply with the new policy through SET_CREDENTIAL_INFO and GET_CREDENTIAL_INFO while failing

authorization for all other messages requiring authorization.

113 An Authorization initiator should initially configure the credential policy for a given Credential ID using the

SET_CREDENTIAL_POLICY request before initially setting the credential information via SET_CREDENTIAL_INFO request for

the same Credential ID.

Authorization Specification DSP0289

24 Work in Progress Version 1.0.0WIP80

114 8.6 Initial Provisioning

115 Initial provisioning or provisioning from the default state is important to ensure proper operation of the Authorization

target. Thus, an Authorization target shall allow an Authorization initiator to set both the credential information and

credential policy of Credential ID 0 as the default. Also, in the default state, an Authorization target shall allow an

Authorization initiator to modify credentials and associated policy for Credential 0 in any manner without credentials.

The Authorization target shall prohibit the provisioning of information or policies associated with other Credential IDs

and shall fail authorization of all messages (including messages of other protocols) requiring authorization until initial

provisioning completes. The successful completion of SET_CREDENTIAL_INFO for Credential ID 0 shall mark the

completion of initial provisioning and an exit out of the default state.

116 After initial provisioning, the Authorization target shall then enforce authorization for all messages requiring

authorization.

117 The above method gives Credential ID 0 the highest privileges in the Authorization target by default. Depending on

the final policy settings of the Authorization target after initial provisioning, the Authorization initiator can configure

one or more Credential IDs to have the highest privilege levels or disperse privileges across two or more Credential

IDs. Furthermore, the authorization initiator can configure privileges in such a way that significantly disables

operation of the Authorization target and recovery from such a state is outside the scope of this specification.

118 8.7 Discovery

119 This section describes the methodology to discover support information of an SPDM endpoint as an Authorization

target. The discovery process has two phases: an announcement phase followed by the Discover-Select Flow phase.

120 In the announcement phase, an Authorization target announces itself at the start of a session. If an SPDM requester

is an Authorization target, the SPDM requester shall populate the AUTH_HELLO AODS in the Session-Secrets-

Exchange request. Likewise, if an SPDM responder is an Authorization target, the SPDM responder shall populate

either the AUTH_HELLO AODS or the SEAP_INVOKED AODS in the Session-Secrets-Exchange response. If an SPDM

responder can populate the SEAP_INVOKED AODS according to the SEAP process, an SPDM responder shall use the

SEAP_INVOKED AODS instead of the AUTH_HELLO AODS.

121 The next phase is the Discover-Select Flow phase and this phase only occurs in the Application phase of an SPDM

session. If the Authorization Initiator receives an AUTH_HELLO AODS, the Authorization Initiator can begin this phase

by issuing the GET_AUTH_VERSION message, followed by the SELECT_AUTH_VERSION and ending with

GET_AUTH_CAPABILITIES . The Authorization Initiator can issue these three requests in any order as well. The

Discover-Select Flow phase does not need to occur or even complete for every session. However, the Authorization

Initiator should complete this phase at least once with the corresponding Authorization target per SPDM connection.

122 Figure 3 — Common Discovery Phase illustrates the discovery methodology for an SPDM responder that is an

Authorization target.

123 Figure 3 — Common Discovery Phase

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 25

124

Session-Secrets-Exchange
Request

Session-Secrets-Exchange
Response

Session-Secrets-Finish
Request and Response

GET_AUTH_VERSION
AUTH_VERSIONS

SELECT_AUTH_VERSION
SELECT_AUTH_VERSION_RSP

Discover-Select
Flow

SPDM
Requester

SPDM
Responder

Legend:

Authenticated and
Encrypted Session

Opaque Data Structure

AUTH_HELLOAUTH_HELLO

GET_AUTH_CAPABILITIES
AUTH_CAPBALITIES

125 8.8 Authorization Process

126 The authorization process is the process by which an Authorization target grants or denies access to a Protected

resource based on policy.

127 Prior to the Authorization process, the Authorization target should have credentials and policy provisioned

appropriate to its usage model. Otherwise, the Authorization target may inappropriately grant or deny access. See

Credential provisioning and Credential policy provisioning and management for details .

128 To properly setup for the execution of the authorization process, an Authorization Initiator shall successfully establish

an SPDM secure session as DSP0274 defines or use an already established SPDM secure session.

129 The Authorization process establishes an authorization session and allows for establishing different types of

authorization sessions. The different authorization processes this specification supports are these:

• User-Specific Authorization Process

• SPDM Endpoint Authorization Process

130 8.8.1 User-Specific Authorization Process

131 The User-Specific Authorization process occurs completely within an SPDM session. This process establishes an

authorization session bound to the user. Thus, one or more User-specific authorization sessions can occur

simultaneously within an SPDM session and the Authorization session identifier shall be the credential ID of the

corresponding User.

Authorization Specification DSP0289

26 Work in Progress Version 1.0.0WIP80

132 The USAP starts with the GET_AUTH_VERSION to query for the supported version, followed by the

SELECT_AUTH_VERSION to select the version to be used for subsequent messages and then followed by the

GET_AUTH_CAPABILITIES to obtain the supported capabilities of the Authorization target. The Authorization Initiator can

skip these messages if it already knows the information beforehand such as from a prior or concurrent SPDM

session or from an earlier request in the same session. The Authorization Initiator should send GET_AUTH_VERSION

and GET_AUTH_CAPABILITIES before the first User-Specific Authorization session in each SPDM session to ensure the

Authorization Initiator has the most up to date information.

133 To establish a User-Specific Authorization session, the Authorization Initiator shall send a START_AUTH request to the

target with the User's corresponding information and the Authorization target shall respond with START_AUTH_RSP for a

successful response. This request and response pair is important for these reasons:

• It elevates the privilege level of the SPDM secure session for that specific User. This portion of an SPDM

session is called an Authorization session.

• It initializes critical cryptographic parameters for all messages requiring authorization in the corresponding

SPDM session and corresponding User. Messages that traverse the corresponding SPDM session can be

messages of any protocol and not restricted to SPDM or Authorization messages.

• The message format of all messages requiring authorization changes to accommodate authorization data for the

corresponding User. The format for such messages is defined in the Authorization Record Section.

134 The successful completion of this request and response effectively establishes the Authorization session for the

corresponding User. While the authorization session is active, messages requiring authorization shall contain

authorization data, called Authorization tag, for the corresponding User. When the Authorization target receives a

message from any protocol in the corresponding SPDM session, the Authorization target shall determine if the

message requires authorization or not regardless of whether or not the message contains an Authorization tag. If a

message requires authorization, the Authorization target shall validate the authorization tag according to the

provisioned credentials and associated policies and the User associated with the corresponding Authorization

session. Upon successful validation of the Authorization tag, the Authorization target shall process the message

accordingly. If a message requiring authorization does not contain an Authorization tag or the validation of the

Authorization tag fails, the Authorization target shall either respond with an AUTH_ERROR message, the corresponding

protocol-specific error or silently discard the message. For messages that do not require authorization, the

Authorization target can process the message according to the definitions of its respective protocol.

135 The User-Specific Authorization session shall terminate for the corresponding User when the Authorization target

receives an END_AUTH request from the Authorization Initiator or the corresponding SPDM session terminates. The

termination of the Authorization session restores an SPDM session to its original privilege level for that User.

Additionally, the termination of a User-Specific Authorization session does not end the corresponding SPDM session.

Lastly, the termination of a USAS does not terminate the processing of received messages to completion according

to the definition of their respective protocol and this specification by the Authorization target.

136 Figure 4 — Authorization Process illustrates an example of the User-Specific Authorization process.

137 Figure 4 — Authorization Process

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 27

138

…

Session-Secrets-Exhange

Session-Secrets-Finish

Various Protocol-Specific Messages

Discover-Select
Flow

Protocol-Specific Messages
Requiring Authorization

Many More Protocol-Specific
Messages Requiring or not

Requiring Authorization

SET_CERTIFICATE SPDM
Request (requires Authorization)

Get Firmware Version
Proprietary Protocol

Request (No Authorization Required)

Protocol-Specific Messages
Not Requiring Authorization

START_AUTH

START_AUTH_RSP

END_AUTH

END_AUTH_RSP

SPDM
Requester

SPDM
Responder

Legend:

Authenticated and
Encrypted Session

User-Specific
Authorization Session

139 8.8.1.1 USAP error handling, requirement and notes

140 A User shall have only one Authorization session active at a time. Therefore, a START_AUTH request shall be

prohibited for the same User when the User has a corresponding active User-Specific Authorization session. The

User-Specific Authorization shall be terminated before another START_AUTH request can be issued. The Authorization

Authorization Specification DSP0289

28 Work in Progress Version 1.0.0WIP80

target shall respond with an AUTH_ERROR or silent discard the request if a START_AUTH is received for a User with a

corresponding active User-Specific Authorization Session.

141 A User can repeat the User-Specific Authorization process as many time as it deems necessarily. However, the

Authorization target can limit the number of simultaneous active User-Specific Authorization sessions for a given

SPDM session.

142 If the Authorization target receives a message with an authorization tag but the message does not require an

authorization tag, the Authorization target shall still process the Authorization tag as this specification defines.

143 8.8.2 SPDM Endpoint Authorization Process

144 The SPDM Endpoint Authorization Process (SEAP) is a process that specifically authorizes an SPDM requester only

or both SPDM endpoints in an SPDM secure session. If SEAP authorizes only the SPDM requester, then the SPDM

requester plays the role of the Authorization Initiator. If SEAP authorizes both endpoints, then the SPDM requester

and SPDM responder can play the role of either an Authorization Initiator or Authorization target at any time within

the session.

145 SEAP requires mutual authentication. Mutual authentication can use certificates or just a raw public key.

146 SEAP is broken into two parts as Figure 5 illustrates. The first part occur during the Session handshake phase as

SPDM defines. The second part occurs during the SPDM Application phase.

147 The first part of SEAP begins with a Session-Secrets-Exchange request. If an SPDM Requester wants to invoke this

authorization process, the SPDM Requester shall add the INVOKE_SEAP data structure to the OpaqueData field of a

Session-Secrets-Exchange request. If the SPDM responder can support SEAP for this new session, it shall return

SEAP_INVOKED data structure to the OpaqueData field in the Session-Secrets-Exchange response; otherwise, this data

structure shall be absent. Additionally, if the SPDM responder wants to send messages requiring authorization to the

SPDM requester using SEAP in the same session, the SPDM responder shall also add the INVOKE_SEAP data

structure to the OpaqueData field of the Session-Secret-Exchange response. If the SPDM responder provides the

INVOKE_SEAP data structure and the SPDM requester supports authorizing the SPDM responder using SEAP, the

SPDM requester shall add the SEAP_INVOKED data structure to the Session-Secrets-Finish request. Lastly, the SPDM

endpoints shall populate all fields appropriately in a Session-Secrets-Exchange request and response message to

perform mutual authentication.

148 The first part of SEAP ends with the Session-Secrets-Finish message exchange. If the SPDM Requester

successfully authenticates and finds a matching Credential ID for the SPDM responder and the SPDM responder has

sent the INVOKE_SEAP data structure, the SPDM Requester shall populate the SEAP_SUCCESS data structure in the

OpaqueData field of the Session-Secrets-Finish request. Likewise, if the SPDM responder successfully authenticates

and finds a matching Credential ID for the SPDM requester, the SPDM responder shall populate the SEAP_SUCCESS

data structure in the OpaqueData field of the Session-Secret-Finish response. Otherwise, if there is a failure or the

OpaqueData field does not exist, the SEAP_SUCCESS data structure in either the request or the response depending of

which endpoint failed shall be absent. A failure to the SEAP process does not end the SPDM session.

149 Before the second part of SEAP can begin, the Authorization Initiator should send GET_AUTH_VERSION to query for the

supported version followed by the SELECT_AUTH_VERSION to select the version to be used for subsequent messages

and then followed the GET_AUTH_CAPABILITIES to obtain the supported capabilities of the Authorization target. The

Authorization Initiator can skip these messages if it already knows the information beforehand such as from a prior or

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 29

concurrent SPDM session or from an earlier request in the same session. The Authorization Initiator should send

GET_AUTH_VERSION and GET_AUTH_CAPABILITIES before the second part of SEAP in each SPDM session to ensure the

Authorization Initiator has the most up to date information. Additionally, the SPDM requester and the SPDM

responder may not support the same versions or capabilities even though they can be both Authorization Initiators in

the same session.

150 The second part of SEAP can begin anytime during in the SPDM application phase. Additionally, the second part of

SEAP can occur as many times as needed in the corresponding SPDM session. To initiate the second part of SEAP,

the Authorization Initiator shall send a ELEVATE_PRIVILEGE request and the Authorization target shall respond with

ELEVATE_PRIVILEGE_RSP for a successful response. This request and response pair elevates the privilege level of the

SPDM secure session for the Authorization Initiator for all subsequent messages until the privilege level is lowered.

An Authorization target shall return an AUTH_ERROR if there is a failure in authorization during the first part of SEAP

(that is, the SEAP_SUCCESS was absent for the corresponding Authorization Initiator).

151 This portion of an SPDM session is called an Authorization session. In SEAP, at most two Authorization sessions can

occur at any time simultaneously in the corresponding SPDM session. One Authorization session would be for the

SPDM Requester who is acting as an Authorization Initiator and the other Authorization session would be for the

SPDM responder who is acting as an Authorization Initiator.

152 The successful completion of this request and response effectively establishes the Authorization session for the

corresponding Authorization Initiator. In an Authorization session, when the Authorization target receives a message

from any protocol in the corresponding SPDM session, the Authorization target shall determine if the message

requires authorization or not. If a message requires authorization, the Authorization target shall validate the message

according to the provisioned policies associated with the corresponding Authorization Initiator. Upon successful

validation of the message, the Authorization target shall process the message accordingly. If the validation of the

message fails, the Authorization target shall either respond with an AUTH_ERROR message, the corresponding

protocol-specific error or silently discard the message. For messages that do not require authorization, the

Authorization target can process the message accordingly.

153 The Authorization session shall terminate for the corresponding Authorization Initiator when the Authorization target

receives an END_ELEVATED_PRIVILEGE request from the Authorization Initiator or the corresponding SPDM session

terminates. The termination of the Authorization session restores an SPDM session to its original privilege level for

that Authorization Initiator. Additionally, the termination of a SEAP Authorization session does not end the

corresponding SPDM session. Lastly, the termination of a SEAP Authorization session does not terminate the

processing of received messages to completion according to the definition of their respective protocol and this

specification by the Authorization target.

154 Figure 5 — SPDM Endpoint Authorization Process (SEAP) illustrates the SPDM Endpoint Authorization Process

(SEAP).

155 Figure 5 — SPDM Endpoint Authorization Process (SEAP)

Authorization Specification DSP0289

30 Work in Progress Version 1.0.0WIP80

156

…

Session-Secrets-Exhange
Request

Session-Secrets-Exhange
Response

Session-Secrets-Finish
Request

Session-Secrets-Finish
Response

Various Protocol-Specific Messages

Session-Based Mutual Authentication

Discover-Select
Flow

Protocol-Specific Messages
Requiring Authorization

Many More Protocol-Specific
Messages Requiring or not

Requiring Authorization

SET_CERTIFICATE SPDM
Request (requires Authorization)

Get Firmware Version
Proprietary Protocol

Request (No Authorization Required)

Protocol-Specific Messages
Not Requiring Authorization

ELEVATE_PRIVILEGE

PRIVILEGE_ELEVATED

END_ELEVATED_PRIVLEGE

ELEVATED_PRIVLEGE_ENDED

SPDM
Requester

SPDM
Responder

Legend:

Authenticated and
Encrypted Session

SEAP
Authorization Session

Opaque Data Structure
when
SPDM Responder is
Authorization Initiator

Opaque Data Structure
when
SPDM Requester is
Authorization Initiator

INVOKE_SEAP
INVOKE_SEAPINVOKE_SEAP

SEAP_INVOKED

SEAP_INVOKED

SEAP_SUCCESS
SEAP_SUCCESS

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 31

157 8.8.2.1 SEAP error handling, requirement and notes

158 If the INVOKE_SEAP data structure is absent in the Session-Secret-Exchange request, then the SEAP_SUCCESS shall be

absent in the OpaqueData field of the corresponding Session-Secrets-Finish response. Likewise, if the INVOKE_SEAP

data structure is absent in the Session-Secret-Exchange response, then the SEAP_SUCCESS shall be absent in the

OpaqueData field of the corresponding Session-Secrets-Finish request.

159 If SEAP uses SPDM Pre-shared key exchange flow, then SEAP_SUCCESS cannot be supported because there is no

OpaqueData Field in the PSK_FINISH or PSK_FINISH_RSP . Thus, if the first part of SEAP fails, the Authorization target

shall return an AUTH_ERROR in the ELEVATE_PRIVILEGE request.

160 If an SPDM session uses SEAP, then that session cannot use USAP because it is not possible to differentiate the

Authorization Initiator of a message requiring authorization especially when an authorization tag is not present.

Specifically, if the SEAP_INVOKED data structure is present in Session-Secret-Exchange response, then the

corresponding SPDM session shall prohibit the use of USAP.

161 8.8.3 Other error handling, requirements and notes

162 When an Authorization session is not active in an SPDM session for a given User or Authorization Initiator, the

processing of messages, regardless of whether or not they require authorization, is outside the scope of this

specification but likely follows the definitions of its respective protocol. From an authorization perspective, this

specification, however, recommends one of these three options:

• The Authorization target uses another form of authorization, which is outside the scope of this specification.

• Respond with an AUTH_ERROR response for all messages requiring authorization.

• Silently discard the message.

163 The Authorization sessions does not limit the types of messages that can traverse an SPDM session but rather

enables explicit validation of authority for all messages according to provisioned credentials and policies.

Furthermore, this specification strongly recommends that messages requiring authorization be denied access for

Users or Authorization entities outside of an Authorization session.

164 The use of the same Credential ID across multiple SPDM sessions can occur at any time, including simultaneously.

The Authorization target and Authorization Initiator shall ensure that authorization data associated with a given

Credential ID is bound to their respective SPDM session and Authorization session. In other words, the authorization

data cannot intermix with another session. For example, the sequence number, the authorization tag or nonce that is

bound to session 45 cannot be used in session 99.

165 8.8.4 Authorization Tag

166 The authorization tag is data that accompanies every message that requires authorization in a User-specific

authorization session. The tag identifies the user requesting authorization. Specifically, the authorization tag contains

a credential ID that numerically identifies the User and verifiable cryptographic information that authenticates the user

to ensure the message came from the corresponding User.

Authorization Specification DSP0289

32 Work in Progress Version 1.0.0WIP80

167 This specification supports asymmetric signature algorithms.

168 8.8.4.1 Authorization Tag Signature Generation and Verification

169 If the provisioned authorization tag cryptographic function for the correspond User is an asymmetric signature

algorithm, then this section defines the operations associated with this algorithm.

170 The verifiable cryptographic information in an Authorization tag shall be a digital signature whose signature algorithm

is the provisioned asymmetric signature algorithm corresponding to the User.

171 To compute the signature, first, the User shall create AuthMsgBody by concatenating the following fields in order:

1. The credential ID of the User.

2. The requester's nonce provided in the START_AUTH request.

3. The responder's nonce provided in the START_AUTH_RSP response.

4. The sequence number

5. The message body

172 The sequence number shall start at 1 with the successful completion of START_AUTH request and shall increment by

one after each message requiring authorization corresponding to the User. For the Authorization target, the

sequence number shall increment by one after receiving a message containing an Authorization tag from the

corresponding User.

173 The actual contents of the message body shall be the bytes of length PayloadLen in the Payload field of the

Authorization Record. Because this specification regards the message body as opaque data, the message body shall

have an octet string byte order.

174 The size of the sequence number shall be 32 bits. Once the sequence number exceeds the maximum value of

0xFFFF_FFFF, the User-Specific Authorization Session shall terminate.

175 Finally, the User shall compute AuthMsgSignature using this function and the corresponding selected asymmetric

signature algorithm.

AuthMsgSignature = AuthSign(UserPrivKey, AuthMsgBody)

176 where:

• The UserPrivKey shall be the private key associated with the corresponding User.

177 The AuthMsgSignature shall be the signature in an Authorization tag for the corresponding user and corresponding

message.

178 Likewise, the Authorization target shall verify the message requiring the authorization through this method:

AuthValResult = AuthSigVerify(UserPublicKey, AuthSignature, AuthMsgBody)

179 where:

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 33

• The UserPublicKey shall be the public key associated with the User associated with the corresponding

credential ID.

• The AuthSignature shall be the signature in the Authorization tag which accompanied the message.

180 If AuthValResult is success, the Authorization tag validates successfully. Otherwise, it fails.

181 The message requiring authorization shall be successful if all the following conditions are met:

• The message contains an Authorization tag.

• The AuthValResult is success.

• The policy associated with the message grants the corresponding User access.

182 Otherwise, the message fails authorization.

Authorization Specification DSP0289

34 Work in Progress Version 1.0.0WIP80

183 9 SPDM authorization messages

184 9.1 Authorization messages overview

185 Authorization messages are messages defined by this specification, that are sent between the Authorization Initiator

and target and forms a request-response protocol. The following clauses describe the rules and requirements for the

messaging protocol.

186 9.1.1 Bi-directional Authorization message processing

187 This clause describes the specifications and requirements for handling bi-directional and overlapping authorization

request messages.

188 If an endpoint can act as both an Authorization Initiator and authorization target, it shall be able to send request

messages and response messages independently.

189 When an SPDM endpoint acts as a proxy between an Authorization Initiator and an authorization target, how the

proxy SPDM endpoint enforces the rules specified in the following clauses are outside the scope of this specification.

190 The following clause assumes that an SPDM endpoint is the Authorization Initiator.

191 9.1.2 Requirements for Authorization Initiators

192 An Authorization Initiator shall not have multiple outstanding requests to the same authorization target, within a single

SPDM session.

193 An outstanding request is a request where the request message has begun transmission, the corresponding

response has not been fully received.

194 Within an SPDM session, if the Authorization Initiator has sent a request to an authorization target and wants to send

a subsequent request to the same target, then the Authorization Initiator shall wait to send the subsequent request

until after the Authorization Initiator completes one of the following actions:

• Receives the response from the authorization target for the outstanding request.

• Times out waiting for a response.

• Receives an indication from the transport layer that transmission of the request message failed.

• The Authorization Initiator encounters an internal error or Reset.

195 An Authorization Initiator might send simultaneous request messages to the same authorization targets across

multiple SPDM sessions or to different authorization targets.

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 35

196 9.1.3 Requirements for Authorization Targets

197 An authorization target is not required to process more than one request message at a time, within a single SPDM

session.

198 An authorization target that is not ready to accept a new request message shall either respond with an AUTH_ERROR

message of ErrorCode=Busy or silently discard the request message.

199 If an authorization target supports authorization messages across concurrent SPDM session, a pending request in

one session shall not affect pending requests in another session.

200 9.1.4 Authorization Messages bits-to-bytes mapping

201 All fields, regardless of size or endianness, map the highest numeric bits to the highest numerically assigned byte in

sequentially decreasing order down to and including the least numerically assigned byte of that field. The following

two figures illustrate this mapping.

202 Figure 6 — One-byte field bit map shows the one-byte field bit map:

203 Figure 6 — One-byte field bit map

204

Byte Offset 3

Bit
0

Bit
1

Bit
4

Bit
3

Bit
2

Bit
7

Bit
6

Bit
5

Example:
A One-Byte Field Starting at Byte Offset 3

205 Figure 7 — Two-byte field bit map shows the two-byte field bit map:

206 Figure 7 — Two-byte field bit map

207

Byte Offset 5

Bit
0

Bit
1

Bit
4

Bit
3

Bit
2

Bit
7

Bit
6

Bit
5

Example:
A Two-Byte Field Starting at Byte Offset 5

Byte Offset 6

Bit
8

Bit
9

Bit
12

Bit
11

Bit
10

Bit
15

Bit
14

Bit
13

208 9.1.5 Version encoding

209 The AuthVersion field in the SELECT_AUTH_VERSION message represents the version of the specification through a

combination of Major and Minor nibbles, encoded as follows:

Authorization Specification DSP0289

36 Work in Progress Version 1.0.0WIP80

Version Matches Incremented when

Major

Major version field in the

AuthVersion field in the

SELECT_AUTH_VERSION message.

Protocol modification breaks backward compatibility.

Minor

Minor version field in the

AuthVersion field in the

SELECT_AUTH_VERSION message.

Protocol modification maintains backward compatibility.

210 EXAMPLE:

211 Version 3.7 → 0x37

212 Version 1.0 → 0x10

213 Version 1.2 → 0x12

214 An endpoint that supports Version 1.2 can interoperate with an older endpoint that supports Version 1.0 or other

previous minor versions. Whether an endpoint supports inter-operation with previous minor versions of the

authorization specification is an implementation-specific decision.

215 An endpoint that supports Version 1.2 only and an endpoint that supports Version 3.7 only are not interoperable and

shall not attempt to communicate beyond GET_AUTH_VERSION .

216 This specification considers two minor versions to be interoperable when it is possible for an implementation that is

conformant to a higher minor version number to also communicate with an implementation that is conformant to a

lower minor version number with minimal differences in operation. In such a case, the following rules apply:

• Both endpoints shall use the same lower version number in the AuthVersion field for all messages.

• Functionality shall be limited to what the lower minor version of the authorization specification defines.

• Computations and other operations between different minor versions of the authorization specification should

remain the same, unless security issues of lower minor versions are fixed in higher minor versions and the fixes

require change in computations or other operations. These differences are dependent on the value in the

AuthVersion field in the message.

• In a newer minor version of the authorization specification, a given message can be longer, bit fields and

enumerations can contain new values, and reserved fields can gain functionality. Existing numeric and bit fields

retain their existing definitions. Also, Fields within a message may grow in length.

• Errata versions (indicated by a non-zero value in the UpdateVersionNumber field for the GET_AUTH_VERSION

request and AUTH_VERSION response messages) clarify existing behaviors in the authorization specification.

They maintain bitwise compatibility with the base version, except as required to fix security vulnerabilities or to

correct mistakes from the base version.

217 For details on the version agreement process, see GET_AUTH_VERSION request and AUTH_VERSION response

messages and SELECT_AUTH_VERSION request and SELECT_AUTH_VERSION_RSP response message. The

detailed version encoding that the AUTH_VERSION response message returns contains an additional byte that

indicates specification bug fixes or development versions. See Table 17 — Successful AUTH_VERSION response

message format.

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 37

218 9.1.6 Authorization Record

219 An authorization record is a wrapper structure that shall be used to carry all message defined in this specification,

and any protocol-specific messages that need to be authorized using the authorization tag, when authorization uses

USAP. The authorization record should be used when authorization uses SEAP since it does not use an

authorization tag and the CredentialID is implicit in the SPDM session used. The authorization record provides a

transport and protocol agnostic way to send and receive authorized messages compliant with this specification. Each

transport shall define a specific mechanism to indicate that a given payload is an authorization record, so that it can

be identified and forwarded to the authorization logic for further processing. An authorization target shall use the

CredentialID field to locate the credential to verify the authorization tag, if present in the authorization record.

220 Table 10 — Authorization Record format shows the Authorization Record format: Table 10 — Authorization Record

format

Byte offset Field Size (bytes) Description

0 Flags 1

Bits [7:1] - Reserved

Bit[0] - If bit is set, AuthTag is present, if not,

AuthTag is not present

1 CredentialID 2
A unique identifier to identify the credential and the

credential slot.

3 AuthTagLen 2
Length, in bytes, of AuthTag . Shall be 0 when Bit 0

of Flags is not set.

5 AuthTag AuthTagLen
Authorization Tag for the Payload , as defined in

Authorization Tag.

5 + AuthTagLen PayloadLen 4 Length, in bytes, of Payload .

9 + AuthTagLen Payload PayloadLen The payload for the authorized message.

221 9.1.7 Generic Authorization message format

222 Table 11 — Generic Authorization message field definitions defines the fields that constitute a generic authorization

message, including the message header and payload:

223 Table 11 — Generic authorization message field definitions

Authorization Specification DSP0289

38 Work in Progress Version 1.0.0WIP80

Byte offset Bit offset Size (bits) Field Description

0 [7:0] 8 Request Response Code

Shall be the request message code

or response code, which Table 12

— Authorization Message request

codes and Table 13 — Authorization

Message response codes

enumerate. 0x00 through 0x7F

represent response codes and

0x80 through 0xFF represent

request codes. In request

messages, this field is considered

the request code. In response

messages, this field is considered

the response code.

1 [7:0] 8 Reserved Reserved

2
See the

description.
Variable Authorization message payload

Shall be zero or more bytes that are

specific to the Request Response

Code .

224 9.2 Authorization messages

225 This section discusses all authorization request and response messages.

226 9.2.1 Authorization message request codes

227 Table 12 — Authorization message request codes defines the Authorization message request codes. The

Implementation requirement column indicates requirements on the Requester.

228 The Authorization requirements column indicates whether or not the message requires authorization. If a value in

this column is Mandatory, the Authorization target shall perform authorization checks for the corresponding request.

If a value in this column is None, the Authorization target shall not perform authorization checks for the

corresponding request. Finally, when the value in this column is Conditional, the section of this specification for the

corresponding request details the requirements. If a request message fails authorization checks, the Authorization

target shall respond with a AUTH_ERROR using ErrorCode=AccessDenied .

229 If an Authorization target receives an unsupported request, the Authorization target shall respond with an

AUTH_ERROR using ErrorCode = UnsupportedRequest .

230 Table 12 — Authorization message request codes

Request Code value Implementation requirement
Authorization

Requirements
Message format

GET_AUTH_VERSION 0x81 Required None

Table 16 —

GET_AUTH_VERSION

request message format

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 39

Request Code value Implementation requirement
Authorization

Requirements
Message format

SELECT_AUTH_VERSION 0x82 Required None

Table 19 —

SELECT_AUTH_VERSION

request message format

SET_CREDENTIAL_INFO 0x86 Optional Conditional

Table 25 —

SET_CREDENTIAL_INFO

request message format

GET_CREDENTIAL_INFO 0x87 Required Conditional

Table 28 —

GET_CREDENTIAL_INFO

request message format

SET_CREDENTIAL_POLICY 0x88 Optional Conditional

Table 30 —

SET_CREDENTIAL_POLICY

request message format

GET_CREDENTIAL_POLICY 0x89 Required Conditional

Table 33 —

GET_CREDENTIAL_POLICY

request message format

START_AUTH 0x83 Optional None
Table 35 — START_AUTH

request message format

END_AUTH 0x84 Optional None
Table 37 — END_AUTH

request message format

ELEVATE_PRIVILEGE 0x85 Optional None

Table 39 —

ELEVATE_PRIVILEGE

request message format

END_ELEVATED_PRIVILEGE 0x86 Optional None

Table 41 —

END_ELEVATED_PRIVILEGE

request message format

GET_AUTH_CAPABILITIES 0x8B Required None

Table 21 —

GET_AUTH_CAPABILITIES

request message format

AUTH_RESET_TO_DEFAULT 0x8C Optional Mandatory

Table 43 —

AUTH_RESET_TO_DEFAULT

request message format

Reserved
All other

values
Reserved Reserved

Authorization implementations

compatible with this version

shall not use the reserved

request codes.

Authorization Specification DSP0289

40 Work in Progress Version 1.0.0WIP80

231 9.2.2 Authorization message response codes

232 The Request Response Code field in the Authorization response message shall specify the appropriate response code

for a request.

233 On a successful completion of an authorization message request, the specified response message shall be returned.

Upon an unsuccessful completion of an authorization command, the AUTH_ERROR response message should be

returned.

234 Table 13 — Authorization message response codes defines the response codes for authorization messages. The

Implementation requirement column indicates requirements on the Responder.

235 Table 13 — Authorization message response codes

Response Value Implementation requirement Message format

AUTH_VERSION 0x01 Required

Table 17 — Successful

AUTH_VERSION response

message format

SELECT_AUTH_VERSION_RSP 0x02 Required

Table 20 — Successful

SELECT_AUTH_VERSION_RSP

response message format

SET_CREDENTIAL_INFO_RSP 0x06 Optional

Table 27 — Successful

SET_CREDENTIAL_INFO_RSP

response message format

GET_CREDENTIAL_INFO_RSP 0x07 Required

Table 29 — Successful

GET_CREDENTIAL_INFO_RSP

response message format

SET_CREDENTIAL_POLICY_RSP 0x08 Optional

Table 32 — Successful

SET_CREDENTIAL_POLICY_RSP

response message format

GET_CREDENTIAL_POLICY_RSP 0x09 Required

Table 34 — Successful

GET_CREDENTIAL_POLICY_RSP

response message format

START_AUTH_RSP 0x03 Optional

Table 36 — Successful

START_AUTH_RSP response

message format

END_AUTH_RSP 0x04 Optional

Table 38 — Successful

END_AUTH_RSP response

message format

ELEVATE_PRIVILEGE_RSP 0x05 Optional

Table 40 — Successful

ELEVATE_PRIVILEGE_RSP

response message format

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 41

Response Value Implementation requirement Message format

END_ELEVATED_PRIVILEGE_RSP 0x6 Optional

Table 42 — Successful

END_ELEVATED_PRIVILEGE_RSP

response message format

AUTH_CAPABILITIES 0xB Required

Table 22 — Successful

AUTH_CAPABILITIES response

message format

AUTH_DEFAULTS_APPLIED 0xC Optional

Table 46 —

AUTH_DEFAULTS_APPLIED

response message format

AUTH_ERROR 0x7F Required
Table 14 — AUTH_ERROR

response message format

Reserved
All other

values
Reserved

Authorization implementations

compatible with this version shall

not use the reserved request codes.

236 9.2.3 Error handling

237 This section discusses general error handling for all authorization messages.

238 9.2.3.1 AUTH_ERROR response message

239 For an authorization request message that results in an error, the authorization target should send an AUTH_ERROR

message to the Requester.

240 Table 14 — AUTH_ERROR response message format shows the AUTH_ERROR response format.

241 Table 15 — Error code and error data shows the detailed error code, error data, and extended error data.

242 Table 14 — AUTH_ERROR response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x7F = AUTH_ERROR . See Table 13 —

Authorization message response codes.

1 Reserved 1 Reserved.

2 ErrorCode 1
Shall be the ErrorCode. See Table 15 — Error code

and error data.

3 ErrorData 0-32
Shall be the Error data. See Table 15 — Error code

and error data.

243 Table 15 — Error code and error data

Authorization Specification DSP0289

42 Work in Progress Version 1.0.0WIP80

ErrorCode Value Description Error data ExtendedErrorData

Reserved 0x00 Reserved. Reserved Reserved

InvalidRequest 0x01
One or more request

fields are invalid
0x00

No extended error data is

provided.

ResetRequired 0x02

The operation or

request requires a reset

to successfully

complete.

0x00
No extended error data is

provided.

Busy 0x03

The Authorization

Initiator received the

request message and

the authorization target

decided to ignore the

request message, but

might be able to process

the request message if

the request message is

sent again in the future.

0x00
No extended error data is

provided.

UnexpectedRequest 0x04

The authorization target

received an unexpected

request message.

0x00
No extended error data is

provided.

Unspecified 0x05
Unspecified error

occurred.
0x00

No extended error data is

provided.

AccessDenied 0x06
Authorization checks

failed.
0x00

No extended error data is

provided.

OperationFailed 0x07

The request was valid

but the requested

operation failed.

0x00
No extended error data is

provided.

VersionMismatch 0x08

Requested

AuthVersion is not

supported or is a

different version from

the selected version.

0x00
No extended error data is

provided.

Reserved
All other

values
Reserved. Reserved Reserved

244 9.2.4 Discovery message

245 Message in this section discover aspects of the Authorization target. These aspects provide basic information to

understand support and establish basic communication parameters.

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 43

246 9.2.4.1 GET_AUTH_VERSION request and AUTH_VERSION response messages

247 This request message shall retrieve the authorization specification version of an endpoint. Table 16 —

GET_AUTH_VERSION request message format shows the GET_AUTH_VERSION request message format and Table 17

— Successful AUTH_VERSION response message format shows the AUTH_VERSION response message format.

248 In all future authorization versions, the GET_AUTH_VERSION and AUTH_VERSION response messages will be backward

compatible with all earlier versions.

249 The Authorization Initiator should begin the discovery process by sending a GET_AUTH_VERSION request message. It

may skip this message if the information provided by the AUTH_VERSION response is known beforehand from a prior

or concurrent SPDM session. All Authorization Targets shall always support the GET_AUTH_VERSION request message

and provide an AUTH_VERSION response containing all supported versions, as Table 16 — GET_AUTH_VERSION

request message format describes.

250 When GET_AUTH_VERSION is used, the Authorization Initiator should consult the AUTH_VERSION response to obtain

information on a common supported version. The Authorization Initiator shall use one of the supported version in all

future communication of other requests. The Authorization Initiator shall not issue other requests until it receives a

successful AUTH_VERSION response and identifies a common version that both sides support. An Authorization Target

shall not respond to the GET_AUTH_VERSION request message with an AUTH_ERROR message except for ErrorCode s

specified in this clause. The selected version for communication with an authorization target shall be the version in

the AuthVersion field of the SELECT_AUTH_VERSION Request message sent by the Authorization Initiator, if sent,

otherwise shall be the highest version supported by the authorization target. If the Authorization Initiator uses a

version other than the selected version in a Request, the Authorization Target should either return an AUTH_ERROR

message of ErrorCode=VersionMismatch or silently discard the Request.

251 Table 16 — GET_AUTH_VERSION request message format shows the GET_AUTH_VERSION request message format:

252 Table 16 — GET_AUTH_VERSION request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x81 = GET_AUTH_VERSION . See Table 12 —

Authorization Message request codes.

1 Reserved 1 Reserved.

253 Table 17 — Successful AUTH_VERSION response message format shows the successful AUTH_VERSION response

message format:

254 Table 17 — Successful AUTH_VERSION response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x01 = AUTH_VERSION . See Table 13 —

Authorization Message response codes.

1 Reserved 1 Reserved.

Authorization Specification DSP0289

44 Work in Progress Version 1.0.0WIP80

Byte offset Field Size (bytes) Description

2 VersionNumberEntryCount 1 Number of version entries present in this table (=n).

3 VersionNumberEntry1:n 2 * n

16-bit version entry. See Table 18 —

VersionNumberEntry definition. Each entry should be

unique.

255 Table 18 — VersionNumberEntry definition shows the VersionNumberEntry definition. See Version encoding for more

details.

256 Table 18 — VersionNumberEntry definition

Bit offset Field Description

[15:12] MajorVersion

Shall be the version of the specification having changes that are

incompatible with one or more functions in earlier major versions of the

specification.

[11:8] MinorVersion

Shall be the version of the specification having changes that are

compatible with functions in earlier minor versions of this major version

specification.

[7:4] UpdateVersionNumber
Shall be the version of the specification with editorial updates and errata

fixes. Informational; ignore when checking versions for interoperability.

[3:0] Alpha

Shall be the pre-release work-in-progress version of the specification.

Because the Alpha value represents an in-development version of the

specification, versions that share the same major and minor version

numbers but have different Alpha versions might not be fully

interoperable. Released versions shall have an Alpha value of zero

(0).

257 9.2.4.2 SELECT_AUTH_VERSION request and SELECT_AUTH_VERSION_RSP response messages

258 The SELECT_AUTH_VERSION request should be used to specify the version of this specification that an authorization

target shall use when interpreting request messages and providing response messages for authorization commands.

The request and response parameters for this message are listed in Table 19 and Table 20. The request should be

sent before any authorization messages other than GET_AUTH_VERSION . For a given SPDM session between an

Authorization Initiator and authorization target, authorization target that supports multiple versions of the

authorization specification but has not received a SELECT_AUTH_VERSION request shall interpret request messages and

provide response messages according to the highest version it supports. The version selected using this request

applies only to the SPDM session in which the message was sent and valid until the session terminates. If an

Authorization Initiator uses concurrent SPDM sessions, this request should be sent in each SPDM session, if the

highest supported version is not desired. The Authorization Initiator shall not send this request more than once within

an SPDM session, and an Authorization Target shall respond with AUTH_ERROR and ErrorCode=InvalidRequest or

silently discard the request, if it receives more than one SELECT_AUTH_VERSION in the SPDM session.

259 Table 19 — SELECT_AUTH_VERSION request message format shows the SELECT_AUTH_VERSION request message

format:

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 45

260 Table 19 — SELECT_AUTH_VERSION request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x82 = SELECT_AUTH_VERSION . See Table 12

— Authorization Message request codes.

1 Reserved 1 Reserved.

2 AuthVersion 1

The version that shall be used for all subsequent

communication between the Authorization Initiator

and target.

261 Table 20 — Successful SELECT_AUTH_VERSION_RSP response message format shows the successful

SELECT_AUTH_VERSION_RSP response message format:

262 Table 20 — Successful SELECT_AUTH_VERSION_RSP response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x02 = SELECT_AUTH_VERSION_RSP . See Table

13 — Authorization Message response codes.

1 Reserved 1 Reserved.

263 9.2.4.3 GET_AUTH_CAPABILITIES request and AUTH_CAPABILITIES response messages

264 The GET_AUTH_CAPABILITIES request and AUTH_CAPABILITIES response shall retrieve capability information from the

Authorization target. The request and response parameters for this message are listed in Table 19 and Table 20.

While this request can be sent multiple times at any time, the request should be sent as the Discovery section

describes.

265 Table 21 — GET_AUTH_CAPABILITIES request message format shows the GET_AUTH_CAPABILITIES request

message format:

266 Table 21 — GET_AUTH_CAPABILITIES request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x8B = GET_AUTH_CAPABILITIES . See Table 12 — Authorization Message

request codes.

1 Reserved 1 Reserved.

267 Table 22 — Successful AUTH_CAPABILITIES response message format shows the successful AUTH_CAPABILITIES

response message format:

268 Table 22 — Successful AUTH_CAPABILITIES response message format

Authorization Specification DSP0289

46 Work in Progress Version 1.0.0WIP80

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x0B = AUTH_CAPABILITIES . See Table 13 — Authorization

Message response codes.

1 Reserved 1 Reserved.

2 MessageCaps 2
The format of this field shall be the format as Table 23 — Message

Supported Bit Definitions defines.

4 AuthProcessCaps 2
The format of this field shall be the format as Table 24 — Authorization

Process Supported Bit Definitions defines.

6 BaseAlgoSupported Len0

If a bit is set, the Authorization target supports the corresponding

asymmetric algorithm. Otherwise, the bit shall be clear.

The format and size of this field shall be the format and size as the

BaseAlgo field in Table 2 — Credential structure defines.

6 + Len0 BaseHashAlgoSupported Len1

If a bit is set, the Authorization target supports the corresponding hash

algorithm. Otherwise, the bit shall be clear.

The format and size of this field shall be the format and size as the

BaseHashAlgo field in Table 2 — Credential structure defines.

6 + Len0 + Len1 SupportedPolicyCount 2

The value of this field shall be the number of policy owners in

SupportedPolicyList . If the value of this field is zero, then the

SupportedPolicyList field shall be absent.

8 + Len0 + Len1 SupportedPolicyList Variable

This field summarizes the policies the Authorization target supports by only

listing the policy owners (PolicyOwnerID).

The format of this field shall be the concatenation of one or more

PolicyOwnerID fields as Table 4 — Policy Structure defines for each policy

the Authorization target supports. The number of PolicyOwnerID s in this

list shall be the value in the SupportedPolicyCount field. If more than one

policy has the same PolicyOwnerID , then this list shall only contain one

instance of this PolicyOwnerID . Finally, this list shall be considered to be

unordered.

To retrieve more details of policy support, the Authorization initiator can

use the GET_CREDENTIAL_POLICY and the corresponding response.

269 Table 23 — Message Supported Bit Definitions defines the messages the authorization endpoint supports.

270 Table 23 — Message Supported Bit Definitions

Byte Offset Bit Offset Field Description

0 0 ChangeCredIDParamsCap
If the Authorization target supports SET_CREDENTIAL_INFO_RSP , then this bit shall be

set. Otherwise, this bit shall not be set.

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 47

Byte Offset Bit Offset Field Description

0 1 ChangeCredPolicyCap
If the Authorization target supports SET_CREDENTIAL_POLICY_RSP , then this bit shall

be set. Otherwise, this bit shall not be set.

0 [7:2] Reserved Reserved.

1 [7:0] Reserved Reserved

271 Table 24 — Authorization Process Supported Bit Definitions defines the messages the authorization endpoint

supports.

272 Table 24 — Authorization Process Supported Bit Definitions

Byte Offset Bit Offset Field Description

0 0 USAPcap

If the Authorization target supports USAP, then this bit shall be set. Otherwise, this bit shall not

be set.

If this bit is set, START_AUTH_RSP , END_AUTH_RSP response message shall be supported.

0 1 SEAPcap

If the Authorization target supports SEAP, then this bit shall be set. Otherwise, this bit shall not

be set.

If this bit is set, PRIVILEGE_ELEVATED and ELEVATED_PRIVILEGE_ENDED response messages shall

be supported.

0 [7:2] Reserved Reserved.

1 [7:0] Reserved Reserved

273 9.2.5 Credential provisioning

274 9.2.5.1 SET_CREDENTIAL_INFO request and SET_CREDENTIAL_INFO_RSP response messages

275 The SET_CREDENTIAL_INFO request shall be used to provision credentials into an authorization target, as described in

the Credentials section. When CredentialList provides an invalid credential type, credential slot or algorithm, the

authorization target shall respond with AUTH_ERROR and ErrorCode=InvalidRequest .

276 The Authorization Initiator shall use the Flags parameter to specify if the request is to provision the list of credentials

or to erase the list of existing credentials. An authorization target shall ensure that the operation is atomic, that is, all

credentials in the CredentialList can successfully be provisioned or erased, and fail if that is not possible. All erase

operations, including on credential slot 0, shall be authorized by an existing credential.

277 Table 25 — SET_CREDENTIAL_INFO request message format shows the SET_CREDENTIAL_INFO request message

format:

278 Table 25 — SET_CREDENTIAL_INFO request message format

Authorization Specification DSP0289

48 Work in Progress Version 1.0.0WIP80

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x86 = SET_CREDENTIAL_INFO . See Table 12

— Authorization Message request codes.

1 Reserved 1 Reserved.

2 SetCredInfoOp 1

The field indicates the requested operation. The

format of this field shall be the format as Table 26

defines.

3 CredInfoParams Variable

This field represent identity information associated

with the given Credential ID. The format and size of

this field shall be the same format and size as Table

2 — Credential Structure defines.

279 Table 26 — Values for SetCredInfoOp field

Value Operation Name Description

0 Reserved Reserved

1 ParameterChange
Shall indicate an operation that modifies credential parameters associated with the given

credential IDs.

2 Erase
Shall indicate an operation that erases all credential parameters associated with the given

credential IDs. All fields except for StructVersion and CredentialID shall be absent.

All other values Reserved Reserved

280 Table 27 — Successful SET_CREDENTIAL_INFO_RSP response message format shows the successful

SET_CREDENTIAL_INFO_RSP response message format:

281 Table 27 — Successful SET_CREDENTIAL_INFO_RSP response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x06 = SET_CREDENTIAL_INFO_RSP . See Table

13 — Authorization Message response codes.

1 Reserved 1 Reserved.

282 9.2.5.1.1 Additional Requirements on SET_CREDENTIAL_INFO

283 An Authorization target shall prohibit an Authorization initiator from erasing their own credentials.

284 9.2.5.2 GET_CREDENTIAL_INFO request and GET_CREDENTIAL_INFO_RSP response messages

285 The GET_CREDENTIAL_INFO request shall be used to retrieve information about credentials provisioned in a credential

slot. If an invalid credential slot or credential slot that is not provisioned is provided as input, the authorization target

shall respond with AUTH_ERROR and ErrorCode=InvalidRequest .

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 49

286 Table 28 — GET_CREDENTIAL_INFO request message format shows the GET_CREDENTIAL_INFO request message

format:

287 Table 28 — GET_CREDENTIAL_INFO request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x87 = GET_CREDENTIAL_INFO . See Table 12

— Authorization Message request codes.

1 Reserved 1 Reserved.

2 CredentialID 2 Credential ID for which information is required.

288 Table 29 — Successful GET_CREDENTIAL_INFO_RSP response message format shows the successful

GET_CREDENTIAL_INFO_RSP response message format:

289 Table 29 — Successful GET_CREDENTIAL_INFO_RSP response message format

Byte offset Field Size (bytes) Description

1 RequestResponseCode 1
Shall be 0x07 = SET_CREDENTIAL_INFO_RSP . See Table

13 — Authorization Message response codes.

2 Reserved 1 Reserved.

3 CredInfoParams Variable

This field represent identity information associated

with the requested Credential ID. The size and

format of this field shall be the same size and format

as Table 2 — Credential Structure defines.

290 9.2.5.3 Credential provisioning authorization requirements

291 The Authorization target shall perform authorization checks for SET_CREDENTIAL_INFO and GET_CREDENTIAL_INFO

requests except for the scenarios that Initial provisioning details.

292 9.2.6 Credential policy provisioning and management

293 9.2.6.1 SET_CREDENTIAL_POLICY request and SET_CREDENTIAL_POLICY_RSP response messages

294 The SET_CREDENTIAL_POLICY request shall be used to associate a policy with a credential as described in the

Credential policies section. When PolicyList provides an invalid credential slot or policy, the authorization target

shall respond with AUTH_ERROR and ErrorCode=InvalidRequest respectively.

295 The Authorization Initiator shall use the Flags parameter to specify if the request is to associate the list of credential

policies, modify an existing policy or to erase the list of existing policies. An authorization target shall ensure that the

operation is atomic, that is, all policies in the PolicyList can successfully be provisioned, modified or erased, and

fail if that is not possible. All modify and erase operations, including on credential slot 0, shall be authorized by an

existing credential.

Authorization Specification DSP0289

50 Work in Progress Version 1.0.0WIP80

296 Table 30 — SET_CREDENTIAL_POLICY request message format shows the SET_CREDENTIAL_POLICY request

message format:

297 Table 30 — SET_CREDENTIAL_POLICY request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x88 = SET_CREDENTIAL_POLICY . See Table

12 — Authorization Message request codes.

1 Reserved 1 Reserved.

2 SetCredPolicyOp 1

The field indicates the requested operation. The

format of this field shall be the format as Table 31

defines.

3 PolicyList Variable

This field represents the policy information to change

that is associated with the given Credential ID. This

field shall only represent the policies associated with

a single Credential ID.

The size and format of this field shall be the same

size and format as Table 3 — Policy List defines.

298 Table 31 — Values for SetCredPolicyOp field

Value Operation Name Description

0 Reserved Reserved

1 ParameterChange
Shall indicate an operation that modifies the credential policy associated with the given

credential IDs.

2 Erase
Shall indicate an operation that erases all credential polices associated with the given

credential IDs. An erase operation shall clear all bits in the policy.

All other values Reserved Reserved

299 Table 32 — Successful SET_CREDENTIAL_POLICY_RSP response message format shows the successful

SET_CREDENTIAL_POLICY_RSP response message format:

300 Table 32 — Successful SET_CREDENTIAL_POLICY_RSP response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x08 = SET_CREDENTIAL_POLICY_RSP . See

Table 13 — Authorization Message response codes.

1 Reserved 1 Reserved.

301 9.2.6.1.1 Additional requirements on SET_CREDENTIAL_POLICY

302 An Authorization target shall prohibit an Authorization initiator from erasing their own policy.

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 51

303 9.2.6.2 GET_CREDENTIAL_POLICY request and GET_CREDENTIAL_POLICY_RSP response messages

304 The GET_CREDENTIAL_POLICY request shall be used to retrieve the policy associated with a provisioned credential slot.

If an invalid credential slot or credential slot that does not have a policy associated is provided as input, the

authorization target shall respond with AUTH_ERROR and ErrorCode=InvalidRequest .

305 Table 33 — GET_CREDENTIAL_POLICY request message format shows the GET_CREDENTIAL_POLICY request

message format:

306 Table 33 — GET_CREDENTIAL_POLICY request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x89 = GET_CREDENTIAL_POLICY . See Table

12 — Authorization Message request codes.

1 Reserved 1 Reserved.

2 CredentialID 2 Credential ID for which information is required.

307 Table 34 — Successful GET_CREDENTIAL_POLICY_RSP response message format shows the successful

GET_CREDENTIAL_POLICY_RSP response message format:

308 Table 34 — Successful GET_CREDENTIAL_POLICY_RSP response message format

Byte offset Field Size (bytes) Description

1 RequestResponseCode 1
Shall be 0x09 = GET_CREDENTIAL_POLICY_RSP . See

Table 13 — Authorization Message response codes.

2 Reserved 1 Reserved.

3 PolicyList Variable

This field represents all the policy information

associated with the requested Credential ID. The

size and format of this field shall be the same size

and format as Table 3 — Policy List defines.

309 9.2.6.3 Credential policy authorization requirements

310 The Authorization target shall perform authorization checks for SET_CREDENTIAL_POLICY and GET_CREDENTIAL_POLICY

requests except for the scenarios that Initial provisioning details.

311 9.2.7 Authorization state management

312 9.2.7.1 START_AUTH request and START_AUTH_RSP response messages

313 The START_AUTH request and START_AUTH_RSP messages are used to establish a User-specific authorization session

as described in USAP. The Authorization target shall respond with an AUTH_ERROR with

Authorization Specification DSP0289

52 Work in Progress Version 1.0.0WIP80

ErrorCode=UnexpectedRequest or silently discard the request if a START_AUTH is received for a User with a

corresponding active USAS. See USAP Error Handling for more information.

314 Table 35 — START_AUTH request message format shows the START_AUTH request message format:

315 Table 35 — START_AUTH request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x83 = START_AUTH . See Table 12 —

Authorization Message request codes.

1 Reserved 1 Reserved.

2 CredentialID 2

A unique identifier to identify the credential and the

credential slot. This also identifies the user for whom

a USAS is started.

4 NonceLen 1
Length of the Nonce field. Shall be 32 bytes for this

version of the specification

5 Nonce NonceLen
Random sequence of bytes chosen by the user

identified by CredentialID .

316 Table 36 — Successful START_AUTH_RSP response message format shows the START_AUTH_RSP response

message format:

317 Table 36 — Successful START_AUTH_RSP response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x03 = START_AUTH_RSP . See Table 13 —

Authorization Message response codes.

1 Reserved 1 Reserved.

2 CredentialID 1
Shall be the CredentialID from the corresponding

START_AUTH request.

3 NonceLen 1
Length of the Nonce field. Shall be 32 bytes for this

version of the specification

4 Nonce NonceLen
Random sequence of bytes chosen by the

authorization target.

318 9.2.7.2 END_AUTH request and END_AUTH_RSP response messages

319 The END_AUTH request and END_AUTH_RSP messages are used to terminate a USAS established using the

START_AUTH command. The termination of the Authorization session restores an SPDM session to its original

privilege level for that User. Additionally, the termination of a USAS does not end the corresponding SPDM session. If

a session for the corresponding user does not exist, the authorization target shall return AUTH_ERROR with

ErrorCode=InvalidRequest .

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 53

320 Table 37 — END_AUTH request message format shows the END_AUTH request message format:

321 Table 37 — END_AUTH request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x84 = END_AUTH . See Table 12 —

Authorization Message request codes.

1 Reserved 1 Reserved.

2 CredentialID 2

A unique identifier to identify the credential and the

credential slot. This also identifies the user for which

a user-specific authorization session is started.

322 Table 38 — Successful END_AUTH_RSP response message format shows the END_AUTH_RSP response message

format:

323 Table 38 — Successful END_AUTH_RSP response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x04 = END_AUTH_RSP . See Table 13 —

Authorization Message response codes.

1 Reserved 1 Reserved.

2 CredentialID 1
Shall be the CredentialID from the corresponding

END_AUTH request.

324 9.2.7.3 ELEVATE_PRIVILEGE request and ELEVATE_PRIVILEGE_RSP response messages

325 ELEVATE_PRIVILEGE request and ELEVATE_PRIVILEGE_RSP response are used to start the authorization session when

the SPDM Endpoint Authorization Process is used. These messages shall be used only during the application

phased of the SPDM session. To initiate the authorization session, the Authorization Initiator shall send a

ELEVATE_PRIVILEGE request and the Authorization target shall respond with ELEVATE_PRIVILEGE_RSP for a successful

response. This request and response pair elevates the privilege level of the SPDM secure session for the

Authorization Initiator for all subsequent messages until the privilege level is lowered. An Authorization target shall

return an AUTH_ERROR with ErrorCode=InvalidRequest if there is a failure during the first part of SEAP (that is, the

SEAP_SUCCESS was absent for the corresponding Authorization Initiator).

326 Table 39 — ELEVATE_PRIVILEGE request message format shows the ELEVATE_PRIVILEGE request message format:

327 Table 39 — ELEVATE_PRIVILEGE request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x85 = ELEVATE_PRIVILEGE . See Table 12 —

Authorization Message request codes.

1 Reserved 1 Reserved.

Authorization Specification DSP0289

54 Work in Progress Version 1.0.0WIP80

328 Table 40 — Successful ELEVATE_PRIVILEGE_RSP response message format shows the ELEVATE_PRIVILEGE_RSP

response message format:

329 Table 40 — Successful ELEVATE_PRIVILEGE_RSP response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x05 = ELEVATE_PRIVILEGE_RSP . See Table

13 — Authorization Message response codes.

1 Reserved 1 Reserved.

330 9.2.7.4 END_ELEVATED_PRIVILEGE request and END_ELEVATED_PRIVILEGE_RSP response message

331 END_ELEVATED_PRIVILEGE request and END_ELEVATED_PRIVILEGE_RSP response are used to terminate the authorization

session when SEAP is used. An Authorization target shall return an AUTH_ERROR with ErrorCode=InvalidRequest if

there is no SEAP in progress.

332 Table 41 — END_ELEVATED_PRIVILEGE request message format shows the END_ELEVATED_PRIVILEGE request

message format: Table 41 — END_ELEVATED_PRIVILEGE request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x86 = END_ELEVATED_PRIVILEGE . See Table

12 — Authorization Message request codes.

1 Reserved 1 Reserved.

333 Table 42 — Successful END_ELEVATED_PRIVILEGE_RSP response message format shows the

END_ELEVATED_PRIVILEGE response message format:

334 Table 42 — Successful END_ELEVATED_PRIVILEGE response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x06 = END_ELEVATED_PRIVILEGE . See Table

13 — Authorization Message response codes.

1 Reserved 1 Reserved.

335 9.2.8 Basic Management

336 Messages in this section provide general management of the Authorization target.

337 9.2.8.1 AUTH_RESET_TO_DEFAULT request and AUTH_DEFAULTS_APPLIED response

338 The AUTH_RESET_TO_DEFAULT request and its successful AUTH_DEFAULTS_APPLIED response shall cause the

authorization target to restore all data associated with the requested parameters back to factory defaults. Depending

on the requested parameters, an Authorization target may require a reset for defaults to become effective.

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 55

339 Table 43 — AUTH_RESET_TO_DEFAULT request message format shows the AUTH_RESET_TO_DEFAULT request

message format:

340 Table 43 — AUTH_RESET_TO_DEFAULT request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x8C = AUTH_RESET_TO_DEFAULT . See Table 12 — Authorization Message

request codes.

1 Reserved 1 Reserved.

2 DataType 2
This field indicates the type of data to reset back to default. The format of this field

shall be the format as Table 44 — Data Type Bit Definition defines.

4 CredentialID 2
The value of this field shall indicate the credential ID(s) to reset back to default.

The value of 0xFFFF shall indicate all credential IDs.

6 SVResetDataTypeCount 1

This field shall be the count of Standard or Vendor Reset Data Type Elements in

SVResetDataTypeList . A value of zero shall indicate the absence of

SVResetDataTypeList .

8 SVResetDataTypeList Variable

This field shall cause data types defined by a standard body or vendor to restore

back to their factory defaults. The format of this field shall be the concatenation of

Standard or Vendor Reset Data Type Element as Table 45 — Standard or Vendor

Reset Data Type Element Format defines.

If a standard or vendor is present in this list, then the list can contain more than

one instance of that standard or vendor because a standard body may have

multiple standards with their corresponding data types. This specification

recommends that the standard or vendor prevent duplicate instances to minimize

payload.

341 Table 44 — Data Type Bit Definition shows the DataType bit definition:

342 Table 44 — Data Type Bit Definition

Byte Offset Bit Offset Field Description

0 0 CredIDParams If this bit is set, Credential ID parameters shall be reset to their default values.

0 1 CredPolicy If this bit is set, Credential policy shall be reset to their default values.

0 [7:2] Reserved Reserved

1 [7:0] Reserved Reserved.

343 Table 45 — Standard or Vendor Reset Data Type Element Format shows the definition for the standard or vendor

data type to restore back to factory defaults:

344 Table 45 — Standard or Vendor Reset Data Type Element Format

Authorization Specification DSP0289

56 Work in Progress Version 1.0.0WIP80

Byte offset Field Size (bytes) Description

0 SVResetDataTypeOwner Len0

This field shall specify the owner of the SVResetDataType field. The format and

size of this field shall be the format and size of the SVH as SPDM defines.

If other DMTF DSP uses the format as this table defines, then the other DMTF

DSP specifications shall use the value associated with DMTF-DSP for the ID

field as SPDM defines.

Len0 SVResetDataTypeLen 1
The value of this field plus 1 shall specify the length of SVResetDataType . The

value of this field shall not exceed 31, indicating a maximum of 32 bytes.

1 + Len0 SVResetDataType Variable

This field shall indicate the standard or vendor specific data types to restore back

to factory defaults.

The SVResetDataTypeOwner defines the format and size for this field.

345 The Authorization target shall reset all data associated with the requested DataType and requested CredentialID .

346 Table 46 — AUTH_DEFAULTS_APPLIED response message format shows the AUTH_DEFAULTS_APPLIED response

message format:

347 Table 46 — AUTH_DEFAULTS_APPLIED response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be 0x0C = AUTH_DEFAULTS_APPLIED . See Table 13 — Authorization Message

response codes.

1 Reserved 1 Reserved.

348 If the Authorization requires a reset to successfully complete the request and there are no other errors, the

Authorization target shall reply with AUTH_ERROR with a ErrorCode=ResetRequired . Otherwise, a successful response

shall indicate all requested data types for the requested Credential ID(s) have been restored to their default values

and the default values immediately applied. The behavior of the authorization target for the requested Credential

ID(s) and the requested data type also restores back to default behavior. The default values and behavior of the

Authorization target is outside the scope of this specification.

349 Lastly, AUTH_RESET_TO_DEFAULT request is an invasive operation. Thus, an Authorization target shall immediately

terminate all active authorization processes associated with the requested Credential IDs after the

AUTH_DEFAULTS_APPLIED response has been sent.

350 9.3 Timing Requirements

351 This section discusses timing requirements for Authorization messages and all messages requiring authorization.

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 57

352 9.3.1 Authorization Messages Timing

353 For messages not requiring authorization, the Authorization target shall respond within 100 ms measured from the

reception of the Authorization request to the transmission of the corresponding response.

354 9.3.2 All Messages requiring Authorization

355 Because this specification provides a mechanism for authorizing messages for any protocol, the Authorization target

can consume additional processing time to process the messages. Protocols that adopt this specification should

consider the additional process time needed and adjust existing timing requirements accordingly.

Authorization Specification DSP0289

58 Work in Progress Version 1.0.0WIP80

356 10 Authorization Opaque Data Structures

357 Authorization Opaque Data Structures (AODS) are data structures that are populated into the OpaqueData field of

various SPDM messages. Other parts of this specification define which AODS populates into which SPDM message.

This section defines the format for each AODS.

358 10.1 General Authorization Opaque Data Structure

359 All AODS format shall follow the General opaque data format as SPDM defines. This section binds the AODS to the

General opaque data format.

360 Table 47 — AODS General Format defines the general format of all AODS.

361 Table 47 — AODS General Format

Byte Offset Field Size (bytes) Description

0 ID 1 The value of this field shall be zero to identify DMTF as the standards body.

1 VendorIDLen 1
The value of this field shall be zero to identify DMTF as the owner of the

definition of all AODS.

2 OpaqueElementDataLen 2
The value of this field shall be the total size of these fields: DMTFspecID ,

AODSid and AODSbody field.

3 DMTFspecID 2
The value of this field shall be 289. This field indicates that the definition of

the OpaqueElementData belongs to this DMTF specification.

5 AODSid 1

This field identifies the AODS and its format in AODSbody . The value of this

field shall be one of the values in the AODS ID column of Table 48 —

AODS IDs.

6 AODSbody AODSbodyLen

This field shall contain the actual AODS content according to the value in

AODSid . See the respective AODS section for the actual definition. The size

of this field shall be the size of AODSbody corresponding to the value in

AODSid field.

5 + AODSbodyLen AlignPadding Variable

See field of the same name in SPDM for definition and requirements. The

OpaqueElementData are the fields following DMTFspecID inclusively but not

including this field.

362 SPDM 1.2 or later defines the General opaque data format for all opaque data populated in all OpaqueData fields of

SPDM messages when OpaqueDataFmt1 is selected as the Opaque data format for the SPDM connection. Prior to

SPDM 1.2 or when OpaqueDataFmt1 is not the selected Opaque data format for the SPDM connection, the format of

the OpaqueData field is out of scope of this specification.

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 59

363 10.2 AODS IDs

364 Table 48 — AODS IDs lists out all AODS in this specification with a short description.

365 Table 48 — AODS IDs

AODS ID AODS Name Description

0 INVOKE_SEAP
Shall invokes the SEAP process for an SPDM endpoint. The format of the AODSbody shall be

the INVOKE_SEAP AODS.

1 SEAP_INVOKED
Shall acknowledge the INVOKE_SEAP request. The format of the AODSbody shall the

SEAP_INVOKED AODS.

2 SEAP_SUCCESS

Shall indicate the SPDM secure session handshake phase of the SEAP process has

successfully passed for the corresponding SPDM endpoint. The format of the AODSbody shall

be the SEAP_SUCCESS AODS.

3 AUTH_HELLO Shall indicate the SPDM endpoint supports being an Authorization target

All other values Reserved Reserved

366 10.3 INVOKE_SEAP AODS

367 The INVOKE_SEAP AODS shall request the other SPDM endpoint to invoke the SEAP process for the requesting

SPDM endpoint. Table 49 — INVOKE_SEAP body definition defines the format for the AODSbody in the AODS

general format when AODS ID is zero.

368 Table 49 — INVOKE_SEAP Body Definition

Byte Offset Field Size (bytes) Description

0 PresenceExtension 1
This field shall indicate the presence of extra fields. The value of this field shall be

reserved.

1 CredentialID 2 The field shall contain the credential ID of the requesting SPDM endpoint.

369 Because the INVOKE_SEAP AODS occurs before the SPDM endpoint knows the supported Authorization versions

of the other SPDM endpoints, the PresenceExtension field helps maintain future compatibility. Future versions of this

specification could define the next lowest unused bit. If a bit is set, the corresponding field shall be present.

370 This allows current implementation to skip the remaining fields and only process fields it knows about. An

implementation can skip remaining fields it doesn't know about by taking into account the OpaqueElementDataLen in

the General AODS format.

Authorization Specification DSP0289

60 Work in Progress Version 1.0.0WIP80

371 10.4 SEAP_INVOKED AODS

372 The SEAP_INVOKED AODS shall acknowledge the INVOKE_SEAP request which invokes the SEAP process for the

requesting SPDM endpoint. Additionally, the presence of this AODS shall indicate the responding SPDM endpoint

supports SEAP for the requesting SPDM endpoint for the corresponding session. Table 50 — SEAP_INVOKED body

definition defines the format for the AODSbody in the AODS general format when AODS ID is 1.

373 Table 50 — SEAP_INVOKED Body Definition

Byte Offset Field Size (bytes) Description

0 PresenceExtension 1
This field shall indicate the presence of extra fields. The value of this field shall be

reserved.

374 Because the SEAP_INVOKED AODS occurs before the SPDM endpoint knows the supported Authorization versions

of the other SPDM endpoints, the PresenceExtension field helps maintain future compatibility. Future versions of this

specification could define the next lowest unused bit. If a bit is set, the corresponding field shall be present.

375 This allows current implementation to skip the remaining fields and only process fields it knows about. An

implementation can skip remaining fields it doesn't know about by taking into account the OpaqueElementDataLen in

the General AODS format.

376 10.5 SEAP_SUCCESS AODS

377 The SEAP_SUCCESS AODS shall indicate the SEAP process during the SPDM session handshake phase for the

requesting SPDM endpoint is successful. Table 51 — SEAP_SUCCESS body definition defines the format for the

AODSbody in the AODS general format when AODS ID is two.

378 Table 51 — SEAP_SUCCESS Body Definition

Byte Offset Field Size (bytes) Description

0 PresenceExtension 1
This field shall indicate the presence of extra fields. The value of this field shall be

reserved.

379 Because the SEAP_SUCCESS AODS occurs before the SPDM endpoint knows the supported Authorization

versions of the other SPDM endpoints, the PresenceExtension field helps maintain future compatibility. Future

versions of this specification could define the next lowest unused bit. If a bit is set, the corresponding field shall be

present.

380 This allows current implementation to skip the remaining fields and only process fields it knows about. An

implementation can skip remaining fields it doesn't know about by taking into account the OpaqueElementDataLen in

the General AODS format.

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 61

381 10.6 AUTH_HELLO AODS

382 The AUTH_HELLO AODS shall indicate the SPDM endpoint providing this AODS is an Authorization target. Table 52

— AUTH_HELLO body definition defines the format for the AODSbody in the AODS general format when AODS ID is

3.

383 Table 52 — AUTH_HELLO Body Definition

Byte Offset Field Size (bytes) Description

0 PresenceExtension 1
This field shall indicate the presence of extra fields. The value of this field shall be

reserved.

384 Because the AUTH_HELLO AODS occurs before the SPDM endpoint knows the supported Authorization versions of

the other SPDM endpoints, the PresenceExtension field helps maintain future compatibility. Future versions of this

specification could define the next lowest unused bit. If a bit is set, the corresponding field shall be present.

385 This allows current implementation to skip the remaining fields and only process fields it knows about. An

implementation can skip remaining fields it doesn't know about by taking into account the OpaqueElementDataLen in

the General AODS format.

Authorization Specification DSP0289

62 Work in Progress Version 1.0.0WIP80

386 11 Cryptographic Operations

387 This section describes or defines cryptographic functions specific to Authorization

388 11.1 Signature Generation and Validation

389 This sections describes the AuthSign and AuthSigVerify functions.

390 11.1.1 Signature algorithm references

391 Refer to the Signature algorithm references section in the SPDM specification (DSP0274) for details on signature

algorithms.

392 11.1.2 Signature generation

393 The AuthSign function used in various part of this specification defines the signature generation algorithm while

accounting for the differences in the various supported cryptographic signing algorithms.

394 The signature generation function takes this form:

signature = AuthSign(PrivKey, data_to_be_signed, context);

395 The AuthSign function shall take these input parameters:

• PrivKey : a secret key associated with the given Credential ID

• data_to_be_signed : a bit stream of the data that will be signed

• context : a string

396 The function shall output a signature using PrivKey and the selected cryptographic signing algorithm.

397 The signing function shall follow these steps to create auth_prefix and auth_context (See Text or string encoding

for encoding rules):

1. Create auth_prefix . The auth_prefix shall be the repetition, four times, of the concatenation of

"dmtf-auth-v", AuthVersionString and ".*". This will form a 64-character string.

2. Create auth_context . If the User is generating the signature, auth_context shall be the

concatenation of "user-" and context .

398 Now follows an example, designated Example 1, of creating a combined_auth_prefix .

399 The version of this specification for this example is 1.4.3, the User is generating a signature, and the context is "my

example context". Thus, the auth_prefix is "dmtf-auth-v1.4.*dmtf-auth-v1.4.*dmtf-auth-v1.4.*dmtf-auth-v1.4.*". The

auth_context is "user-my example context".

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 63

400 Next, the combined_auth_prefix is formed. The combined_auth_prefix shall be the concatenation of four elements:

auth_prefix , a byte with a value of zero, zero_pad , and auth_context . The size of zero_pad shall be the number

of bytes needed to ensure that the length of combined_auth_prefix is 100 bytes. The size of zero_pad can be zero.

The value of zero_pad shall be zero.

401 Continuing Example 1, Table 53 — Combined SPDM prefix shows the combined_auth_prefix with offsets. Offsets

increase from left to right and top to bottom. As shown, the length of combined_auth_prefix is 100 bytes.

Furthermore, a number surrounded by double quotation marks indicates that the ASCII value of that number is used.

See Text or string encoding for encoding rules. Table 53 concludes Example 1.

402 Table 53 — Combined SPDM prefix

Offset 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

0 d m t f - a u t h - v "1" . "4" . *

0x10 d m t f - a u t h - v "1" . "4" . *

0x20 d m t f - a u t h - v "1" . "4" . *

0x30 d m t f - a u t h - v "1" . "4" . *

0x40 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 u s e

0x50 r - m y space (0x20) e x a m p l e space (0x20) c o n

0x60 t e x t

403 The next step is to form the message_hash . The message_hash shall be the hash of data_to_be_signed using the

selected hash function associated with the given Credential ID. Many hash algorithms allow implementations to

compute an intermediate hash, sometimes called a running hash. An intermediate hash allows for the updating of the

hash as each byte of the ordered data of the message becomes known. Consequently, the ability to compute an

intermediate hash allows for memory utilization optimizations where an Authorization endpoint can discard bytes of

the message that are already covered by the intermediate hash while waiting for more bytes of the message to be

received.

404 Because each cryptographic signing algorithm is vastly different, these clauses define the binding of SPDMsign to

those algorithms.

405 11.1.2.1 RSA and ECDSA signing algorithms

406 All RSA and ECDSA specifications do not define a specific hash function. Thus, the hash function to use shall be the

selected hash function associated with the given Credential ID.

407 The private key, defined by the specification for these algorithms, shall be PrivKey .

408 In the specification for these algorithms, the letter M denotes the message to be signed. M shall be the

concatenation of combined_auth_prefix and message_hash .

409 RSA and ECDSA algorithms are described in Signature algorithm references.

Authorization Specification DSP0289

64 Work in Progress Version 1.0.0WIP80

410 The FIPS PUB 186-5 supports deterministic ECDSA as a variant of ECDSA. RFC 6979 describes this deterministic

digital signature generation procedure. This variant does not impact the signature verification process. How an

implementation chooses to support ECDSA or deterministic ECDSA is outside the scope of this specification.

411 11.1.2.2 EdDSA signing algorithms

412 These algorithms are described in RFC 8032.

413 The private key, defined by RFC 8032, shall be PrivKey .

414 In the specification for these algorithms, the letter M denotes the message to be signed.

415 11.1.2.2.1 Ed25519 sign

416 This specification only defines Ed25519 usage and not its variants.

417 M shall be the concatenation of combined_auth_prefix and message_hash .

418 11.1.2.2.2 Ed448 sign

419 This specification only defines Ed448 usage and not its variants.

420 M shall be the concatenation of combined_auth_prefix and message_hash .

421 Ed448 defines a context string, C . C shall be the auth_context .

422 11.1.2.3 SM2 signing algorithm

423 This algorithm is described in GB/T 32918.2-2016. GB/T 32918.2-2016 also defines the variable M and IDA.

424 The private key defined by GB/T 32918.2-2016 shall be PrivKey .

425 In the specification for SM2, the letter M denotes the message to be signed. M shall be the concatenation of

combined_auth_prefix and message_hash .

426 The SM2 specification does not define a specific hash function. Thus, the hash function to use shall be the selected

hash function associated with the given Credential ID.

427 Lastly, SM2 expects a distinguishing identifier, which identifies the signer and is indicated by the variable IDA. If this

algorithm is selected, the ID shall be an empty string of size 0.

428 11.1.3 Signature verification

429 The AuthSigVerify function, used in various part of this specification, defines the signature verification algorithm

while accounting for the differences in the various supported cryptographic signing algorithms.

430 The signature verification function takes this form:

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 65

AuthSigVerify(PubKey, signature, unverified_data, context);

431 The AuthSigVerify function shall take these input parameters:

• PubKey : the public key associated with the given Credential ID

• signature : a digital signature

• unverified_data : a bit stream of data that needs to be verified

• context : a string

432 The function shall verify the unverified_data using signature , PubKey , and a selected cryptographic signing

algorithm. AuthSigVerify shall return success if the signature verifies correctly and failure otherwise. Each

cryptographic signing algorithm states the verification steps or criteria for successful verification.

433 The verifier of the signature shall create auth_prefix , auth_context , and combined_auth_context as described in

Signature generation.

434 The next step is to form the unverified_message_hash . The unverified_message_hash shall be the hash of the

unverified_data using the selected hash function associated with the given Credential ID.

435 The selected cryptographic signature verification algorithm is the one associated with the given Credential ID.

436 Because each cryptographic signature verification algorithm is vastly different, these clauses define the binding of

AuthSigVerify to those algorithms.

437 11.1.3.1 RSA and ECDSA signature verification algorithms

438 All RSA and ECDSA specifications do not define a specific hash function. Thus, the hash function to use shall be the

selected hash function associated with the given Credential ID.

439 The public key, defined in the specification for these algorithms, shall be PubKey .

440 In the specification for these algorithms, the letter M denotes the message that is signed. M shall be concatenation

of the combined_auth_prefix and unverified_message_hash .

441 For RSA algorithms, AuthSigVerify shall return success when the output of the signature verification operation, as

defined in the RSA specification, is "valid signature". Otherwise, AuthSigVerify shall return a failure.

442 For ECDSA algorithms, AuthSigVerify shall return success when the output of "ECDSA Signature Verification

Algorithm" as defined in FIPS PUB 186-5 is "accept" . Otherwise, AuthSigVerify shall return failure.

443 RSA and ECDSA algorithms are described in Signature algorithm references.

444 11.1.3.2 EdDSA signature verification algorithms

445 RFC 8032 describes these algorithms. RFC 8032, also, defines the M , PH , and C variables.

446 The public key, also defined in RFC 8032, shall be PubKey .

447 In the specification for these algorithms, the letter M denotes the message to be signed.

Authorization Specification DSP0289

66 Work in Progress Version 1.0.0WIP80

448 11.1.3.2.1 Ed25519 verify

449 M shall be the concatenation of combined_auth_prefix and unverified_message_hash .

450 AuthSigVerify shall return success when step 1 does not result in an invalid signature and when the constraints of

the group equation in step 3 are met as described in RFC 8032 section 5.1.7. Otherwise, AuthSigVerify shall return

failure.

451 11.1.3.2.2 Ed448 verify

452 M shall be the concatenation of combined_auth_prefix and unverified_message_hash .

453 Ed448 defines a context string, C . C shall be the auth_context .

454 AuthSigVerify shall return success when step 1 does not result in an invalid signature and when the constraints of

the group equation in step 3 are met as described in RFC 8032 section 5.2.7. Otherwise, AuthSigVerify shall return

failure.

455 11.1.3.3 SM2 signature verification algorithm

456 This algorithm is described in GB/T 32918.2-2016, which also defines the variable M and IDA.

457 The public key, also defined in GB/T 32918.2-2016, shall be PubKey .

458 In the specification for SM2, the variable M' is used to denote the message that is signed. M' shall be the

concatenation of combined_auth_prefix and unverified_message_hash .

459 The SM2 specification does not define a specific hash function. Thus, the hash function to use shall be the selected

hash function associated with the given Credential ID.

460 Lastly, SM2 expects a distinguishing identifier, which identifies the signer, and is indicated by the variable IDA. See

SM2 signing algorithm to create the value for IDA.

461 AuthSigVerify shall return success when the Digital signature verification algorithm, as described in GB/T

32918.2-2016, outputs an "accept". Otherwise, AuthSigVerify shall return failure.

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 67

462 12 Authorization event types

463 The Authorization event types are sent using SPDM Event mechanism. This section uses many variable names that

SPDM defines. See DSP0274 for details, especially the eventing mechanism sections.

464 The EventGroupId in SPDM events identifies the owner of the event. For Authorization, the EventGroupId shall

indicate DMTF-DSP with a Vendor ID value of 289.

465 The Authorization event types table shows the supported Authorization event types for the Authorization event group.

The values in the Event Type ID column shall be the same values for EventTypeId field in the SPDM Event data

table for the Authorization event group for the corresponding event in the Event Name column. The version

(EventGroupVer) of the Authorization Event Group shall be 1 .

466 Table 54 — Authorization event types table

Event Type ID Event Name Requirement Description

0 Reserved Reserved Reserved.

1 CredInfoChanged Mandatory
A change to one or more parameters via the SET_CREDENTIAL_INFO has occurred for

a Credential ID.

2 CredPolicyChanged Mandatory
One or more parameters associated with SET_CREDENTIAL_POLICY has changed for a

Credential ID.

All others Reserved Reserved Reserved.

467 12.1 Event type details

468 Each Authorization event type has its own event-specific information, referred to as EventDetail , to describe the

event. These clauses describe the format for each Authorization event type. The event types are listed in the

Authorization event types table.

469 12.1.1 Credential info Changed event

470 An Authorization target shall use this event (EventTypeId=CredInfoChanged) to notify the Event Recipient as SPDM

defines that the Authorization target made a change to one or more parameters by the SET_CREDENTIAL_INFO request.

471 The Credential Info Changed format table describes the format for EventDetail as SPDM defines.

472 Table 55 — Credential Info Changed format

Offset Field Size (bytes) Description

0 CredentialIdCount 2 Shall be the number of Credential IDs in CredentialIdList

Authorization Specification DSP0289

68 Work in Progress Version 1.0.0WIP80

Offset Field Size (bytes) Description

2 CredentialIdList Variable

Shall be a list of Credential IDs whose credential information change through the

SET_CREDENTIAL_INFO request. The format of this field shall be the concatenation of

CredentialID s as Table 2 — Credential Structure defines. Thus, the size of this field

shall be CredentialIdCount * the size of CredentialID .

473 The Authorization initiator can issue GET_CREDENTIAL_INFO to obtain details of this change.

474 12.1.2 Credential policy changed event

475 An Authorization target shall use the Credential policy changed event (EventTypeId=CredPolicyChanged) to notify the

Event Recipient as SPDM defines when one or more credential policies have changed through the

SET_CREDENTIAL_POLICY request. The EventDetail format for this event type shall be as Credential Policy changed

event details format defines. This event only indicates a single policy change. If more than one policy changes, then

each change will have their own event.

476 Table 56 — Credential policy changed event details format describes the format for EventDetail for the

CredPolicyChanged event.

477 Table 56 — Credential policy changed event details format

Offset Field Size (bytes) Description

0 CredentialID 2
Shall be the credential ID associated with the credential policy that

changed.

2 PolicyOwnerID PolicyOwnerIdLen

Shall identify the owner of the definition of the policy that changed. The

format of this field shall be the SVH as SPDM defines. The length of this

field shall be the length of the SVH.

2 + PolicyOwnerIdLen PolicyID PolicyIdLen

Shall identify the actual policy, defined by PolicyOwnerID , that changed.

The length of this field shall be defined by PolicyOwnerID . However, the

length of this field shall not exceed four bytes to ensure the Authorization

initiator retrieves additional details through the GET_CREDENTIAL_POLICY

request and to prevent data overloading in the overall SPDM eventing

mechanism.

If the PolicyOwnerID indicates DSP0289 using DMTF-DSP as standards

body registry, then the format and size of this field is the PolicyType field

as Table 7 — DSP0289 General Policy Definitions defines.

478 The Authorization initiator can issue GET_CREDENTIAL_POLICY to obtain further details on the change.

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 69

479 13 ANNEX A (informative) change log

480 13.1 Version 1.0.0 (in progress)

• Initial release

Authorization Specification DSP0289

70 Work in Progress Version 1.0.0WIP80

481 14 Bibliography

482 DMTF DSP4014, DMTF Process for Working Bodies, https://www.dmtf.org/dsp/DSP4014

DSP0289 Authorization Specification

Version 1.0.0WIP80 Work in Progress 71

https://www.dmtf.org/dsp/DSP4014

	Authorization Specification
	1 Foreword
	1.1 Acknowledgments
	2 Introduction
	2.1 Document conventions
	2.1.1 Reserved and unassigned values
	2.1.2 Byte ordering
	2.1.2.1 Default Byte Order
	2.1.2.2 Octet string byte order
	2.1.2.3 Signature byte order

	2.1.3 Text or string encoding
	2.1.4 Other conventions

	3 Scope
	4 Normative references
	5 Terms and definitions
	6 Symbols and abbreviated terms
	7 Notations
	8 SPDM authorization architecture
	8.1 Architecture overview
	8.2 Authorization version
	8.3 Authorization flows
	8.3.1 Credential provisioning overview
	8.3.2 Runtime authorization overview

	8.4 Credentials
	8.5 Credential policies
	8.5.1 DSP0289 Credential Policy
	8.5.1.1 DSP0289 Additional Credential Policy Requirements

	8.6 Initial Provisioning
	8.7 Discovery
	8.8 Authorization Process
	8.8.1 User-Specific Authorization Process
	8.8.1.1 USAP error handling, requirement and notes

	8.8.2 SPDM Endpoint Authorization Process
	8.8.2.1 SEAP error handling, requirement and notes

	8.8.3 Other error handling, requirements and notes
	8.8.4 Authorization Tag
	8.8.4.1 Authorization Tag Signature Generation and Verification

	9 SPDM authorization messages
	9.1 Authorization messages overview
	9.1.1 Bi-directional Authorization message processing
	9.1.2 Requirements for Authorization Initiators
	9.1.3 Requirements for Authorization Targets
	9.1.4 Authorization Messages bits-to-bytes mapping
	9.1.5 Version encoding
	9.1.6 Authorization Record
	9.1.7 Generic Authorization message format

	9.2 Authorization messages
	9.2.1 Authorization message request codes
	9.2.2 Authorization message response codes
	9.2.3 Error handling
	9.2.3.1 AUTH_ERROR response message

	9.2.4 Discovery message
	9.2.4.1 GET_AUTH_VERSION request and AUTH_VERSION response messages
	9.2.4.2 SELECT_AUTH_VERSION request and SELECT_AUTH_VERSION_RSP response messages
	9.2.4.3 GET_AUTH_CAPABILITIES request and AUTH_CAPABILITIES response messages

	9.2.5 Credential provisioning
	9.2.5.1 SET_CREDENTIAL_INFO request and SET_CREDENTIAL_INFO_RSP response messages
	9.2.5.1.1 Additional Requirements on SET_CREDENTIAL_INFO

	9.2.5.2 GET_CREDENTIAL_INFO request and GET_CREDENTIAL_INFO_RSP response messages
	9.2.5.3 Credential provisioning authorization requirements

	9.2.6 Credential policy provisioning and management
	9.2.6.1 SET_CREDENTIAL_POLICY request and SET_CREDENTIAL_POLICY_RSP response messages
	9.2.6.1.1 Additional requirements on SET_CREDENTIAL_POLICY

	9.2.6.2 GET_CREDENTIAL_POLICY request and GET_CREDENTIAL_POLICY_RSP response messages
	9.2.6.3 Credential policy authorization requirements

	9.2.7 Authorization state management
	9.2.7.1 START_AUTH request and START_AUTH_RSP response messages
	9.2.7.2 END_AUTH request and END_AUTH_RSP response messages
	9.2.7.3 ELEVATE_PRIVILEGE request and ELEVATE_PRIVILEGE_RSP response messages
	9.2.7.4 END_ELEVATED_PRIVILEGE request and END_ELEVATED_PRIVILEGE_RSP response message

	9.2.8 Basic Management
	9.2.8.1 AUTH_RESET_TO_DEFAULT request and AUTH_DEFAULTS_APPLIED response

	9.3 Timing Requirements
	9.3.1 Authorization Messages Timing
	9.3.2 All Messages requiring Authorization

	10 Authorization Opaque Data Structures
	10.1 General Authorization Opaque Data Structure
	10.2 AODS IDs
	10.3 INVOKE_SEAP AODS
	10.4 SEAP_INVOKED AODS
	10.5 SEAP_SUCCESS AODS
	10.6 AUTH_HELLO AODS
	11 Cryptographic Operations
	11.1 Signature Generation and Validation
	11.1.1 Signature algorithm references
	11.1.2 Signature generation
	11.1.2.1 RSA and ECDSA signing algorithms
	11.1.2.2 EdDSA signing algorithms
	11.1.2.2.1 Ed25519 sign
	11.1.2.2.2 Ed448 sign

	11.1.2.3 SM2 signing algorithm

	11.1.3 Signature verification
	11.1.3.1 RSA and ECDSA signature verification algorithms
	11.1.3.2 EdDSA signature verification algorithms
	11.1.3.2.1 Ed25519 verify
	11.1.3.2.2 Ed448 verify

	11.1.3.3 SM2 signature verification algorithm

	12 Authorization event types
	12.1 Event type details
	12.1.1 Credential info Changed event
	12.1.2 Credential policy changed event

	13 ANNEX A (informative) change log
	13.1 Version 1.0.0 (2024-10-10)
	14 Bibliography

